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3.2 Qualitative Evaluation

The data representation strongly affects the 
performance of machine learning [1].
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In particular, disentangled representation 
learning (DRL) have attracted much 
attention in the field of representation 
learning [15-20].

DRL aims to obtain disjoint, independent 
latent variables corresponding to 
semantically meaningful factors of variation  
by unsupervised learning [1, 2, 5, 6].
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The most popular form is a deep generative 
model based on Variational Autoencoder 
(VAE) [4], which has an explicit constraint to 
infer independent latent variables.
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Visual-Semantic Embedding (VSE) [22]
Visual and semantic contents are embedded in the same space.
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The meanings of the independent latent variables are superposed 
using the additive compositionality of word embeddings.

VSE vector

Datasets
• CelebA [23]: 202,599 face images with 40 attribute labels

(training images: 200,551, test images: 2,048)
• Stanford Cars [24]: 16,185 automobile images with 196 class labels

(training images: 8,144, test images: 8,041)

Network Architecture Settings
• Num. of latent variables: 𝑁 = 32

→ the same settings as [2]
• Sub-Encoder: the pre-trained VSE 

image encoder [22]
• Hyperparameters: 𝛽 = 1, 𝛾 = 10

Compared Methods
• VAE [4]
• 𝛽-VAE [2]: 𝛽 = 10
• CC𝛽-VAE [11]: 𝛽 = 10
• 𝛽-TCVAE [6]: (𝛼, 𝛽, 𝛾) = (1,10,1)
• FactorVAE [12]: 𝛾 = 10
• DIP-VAE-I [13]: 𝜆𝑜𝑑 = 4, 𝜆𝑑 = 200
• DIP-VAE-II [13]: 𝜆𝑜𝑑 = 80, 𝜆𝑑 = 40

Words describing the − direction
“dark” (sim: -0.38892)
“night” (sim: -0.31997)
“spraying” (sim: -0.27426)

Words describing the + direction
“fishing” (sim: 0.31756)

“parasail” (sim: 0.29918)
“Oatmeal” (sim: 0.29678)

𝑧 < 0 𝑧 > 0𝑧 = 0

The effectiveness of our methods has been demonstrated in 
disentanglement and transferability over other existing VAE-based 
DRL methods.

The basis vector 𝒂𝑖 of the linear sub-decoder 𝑨 can be interpreted 
as the meaning of the latent representation 𝑧𝑖 by finding a word 
with the highest cosine similarity between its embedding and 𝒂𝑖.

(Dataset: CelebA [23])

Dataset CelebA Stanford Cars CelebA

Metric
WINDI

N↑
RMIG ↑

JEM-
MIG ↓

WINDIN
↑

RMIG ↑
JEM-

MIG ↓
Transfer Learning 

Error↓
VAE [4] 0.0353 0.0462 0.727 0.0367 0.0030 1.302 16.15%± 0.32
𝛽-VAE [2] 0.0563 0.0267 0.851 0.0520 0.0034 1.380 18.06%± 0.30
CC𝛽-VAE [11] 0.0382 0.0465 0.635 0.0367 0.0031 1.022 16.61%± 0.32
𝛽-TCVAE [6] 0.0661 0.0269 0.996 0.0941 0.0038 1.389 18.18%± 0.36
FactorVAE [12] 0.0352 0.0520 0.376 0.0360 0.0035 0.991 16.94%± 0.27
DIP-VAE-I [13] 0.0336 0.0205 0.730 0.0333 0.0032 1.312 16.78%± 0.30
DIP-VAE-II [13] 0.0358 0.0178 0.445 0.0330 0.0009 0.913 17.81%± 0.64
Ours 0.0394 0.0506 0.714 0.0342 0.0030 1.258 16.01%± 0.24
Ours + 𝛽-TCVAE 0.0848 0.0256 0.985 0.0965 0.0038 1.386 -
Ours + FactorVAE 0.0336 0.0588 0.247 0.0360 0.0033 0.903 -

↑: higher is better. ↓: lower is better.

We introduce the semantic information into a VAE-based 
deep generative model via the VSE reconstruction.

Our model can explain the obtained latent representations 
to perform unsupervised DRL along the explained words.

Table: Evaluations of obtained representations in disentanglement and transferability.

Figure: An example of latent traversal with the top-3 similar words (sim: cosine similarity 
with the basis vector of the latent variable)

Loss Function

• 𝛽 encourages the independence of latent variables.
• 𝛾 encourages the reconstruction in the VSE space, which 

supports the semantic disentanglement and the explanation.

Figure: classification into two classes and .
Figure: a diagram of DRL.
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Figure: an overview of our VAE-based model.

Figure: explanation of learned latent representations by our model.

1.3 Weakly-Supervised 
Disentanglement

Unsupervised generative models 
cannot distinguish representations 
with the identical distribution [15].

Our Approach in this paper:
Learning an unsupervised VAE-based 
generative model where each latent variable 
has a word explaining its representation

Smiling

Azimuth

Smiling

Azimuth

Figure: an entangled representation (left) and a 
disentangled one (right) in the same distribution.
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