# Deep Video Compression for Interframe Coding

David Alexandre, Hsueh-Ming Hang, Wen-Hsiao Peng, Marek Domański

National Yang Ming Chiao Tung University, Taiwan Poznań University of Technology, Poland





## **Contributions**

- We design an inter-frame video coding scheme that includes
   I- and P-frames within a GOP.
- We propose a local motion predictor, which predicts the current-frame motion vectors using the previous two coded frames. It enables our scheme to transmit only the differential motion vectors (or optical flow) to the decoder to save bits.
- 3. Our **refine-net** is paired with **the residual codec** to improve the reconstructed image quality.

#### **Proposed Method**



2. Image Residual Coding

## **Proposed Method (1) - Motion Extractor**

## Motion Extractor-Net

- Use PWC-Net
- Produce optical flow as motion information

#### Motion Predictor-Net

 Extrapolate the optical flow based on two previous decoded frames



 $\hat{x}_{t-2}, \hat{x}_{t-1}$ : decoded frame *t*-2 and *t*-1.  $\hat{v}_{t-1}$ : estimated opt flow based on  $\hat{x}_{t-2}, \hat{x}_{t-1}$ .  $\bar{v}_t$ : extrapolated opt flow for frame *t*.

### **Proposed Method (2) - Motion Compression**



 $\bar{v}_t$ : extrapolated opt. flow for frame t.  $v_t$ : estimated opt. flow based on current frame t.  $\Delta \hat{v}_t$ : decoded differential opt. flow

#### Motion Compressor

- Transmit the differences between the estimated current opt. flow and the extrapolated opt. flow.
- Adopt the learning-based compressor with hyperprior
   (Minnen, et al., "Joint Autoregressive and Hierarchical Priors for Learned Image Compression," NIPS 2018)

## **Proposed Method (3) - Residual Compressor**



• Design a multi-scale refinement network

 $x_t$ : original frame t.  $\bar{x}_t$ : motion-compensated frame t.  $r_t$ ,  $\hat{r}_t$ : original and decoded residuals.

## **Architecture (1) - Motion Extractor/Prediction**



Motion Extractor-Net -- optical flow estimation based on two previous decoded frames Motion Predictor-Net (motion extrapolation) -- forward warping to predict future optical flow

## **Architecture (2) - Motion Extractor/Prediction**



## **Architecture (3) - Refine-Net**

- The multi-scale refinement network uses residual blocks.
- It uses the motioncompensated frame and the decoded residuals.
- Our compressor sends extra signaling to *hint* the Refine-Net to reconstruct a higher quality target frame.



## **Experiments - Training Setup – 3 Phases**

#### Loss Functions for three phase of training

- 1. <u>Motion Predictor</u>  $D_E = MSE(x'_t, x_t)$ 2. Motion Coding
  - $D_v = MSE(\bar{x}_t, x_t)$
- 3. Residual Coding / End-to-End

$$x_t$$
: original frame  $t$   
 $x'_t$ : motion compensated frame using  
predicted flow  
 $\bar{x}_t$ : motion-compensated frame with  
coded motion information  
 $\hat{x}_t$ : decoded frame  $t$ 

$$D_r = MSE(\hat{x}_t, x_t) / MSSSIM(\hat{x}_t, x_t)$$
$$L = \lambda_v * D_v + \lambda_r * D_r + R_v + R_r$$
$$\lambda_v = 0.2 * \lambda_r$$

 $R_{v}$ : bit rate for motion info.  $R_{r}$ : bit rate for residuals

#### **Experiments - Extrapolated Motion (1)**



**Reference Frame** 



**Using Extrapolated Flow** 



**Target Frame** 







**Extrapolated Flow** 

**Flow Residual** 

**Ground Truth Flow** 

#### **Experiments - Extrapolated Motion (2)**



**Reference Frame** 



**Using Extrapolated Flow** 



**Target Frame** 





**Extrapolated Flow** 

**Flow Residual** 

**Ground Truth Flow** 

#### **Experiments - Video Coding Sample**





HEVC Class D – BasketballPass 416x240 Avg. PSNR: 31.15 Avg. BPP: ~0.11 HEVC Class D – HorseRace 416x240 Avg. PSNR: 29.49 Avg. BPP: ~0.2

### **Experiments - R-D Performance-1**



- Training dataset: Vimeo-90k Septuplet
- Validation dataset: UVG, HEVC Class D
- Testing scenario: 10 frames per GOP, using first 100 frames from each dataset.

#### **Experiments - R-D Performance-2**



## Conclusions

- 1. A **learning-based inter-frame video compression** system is presented for interframe coding.
- 2. We propose a motion predictor-net, which predicts the motion vectors for the target frame based on two previously coded frames.
- 3. Our residual compressor generates side information embedded in the coded residuals to assist Refine-Net for better image reconstruction.
- 4. Its RD performance is comparable with the other SOTA learning-based video codecs.

Thank you for your attention

# **Additional Information**

The detail for our network parameters is shown in Table 1. The intra coding has the largest parameter number around 7.2M. The motion coding uses 6.3M, and the residual coding.

| Model                   | Params |
|-------------------------|--------|
| Intra coding            | 7.2 M  |
| Motion extractor-net    | 700 K  |
| Motion estimator-net    | 640 K  |
| Motion compressor-net   | 5.0 M  |
| Residual compressor-net | 5.0 M  |
| Residual refine-net     | 501 K  |

#### **Refine-net in Residual Information**

Portion of the reference frame (left) to compare with (center), which contains "extra signaling" (dotted pattern) next to the rider arms. The extra signaling is used the refine-net to produce the correct reconstruction (right).



 $\overline{x}_{t-1}$ 





 $\hat{x}_t$ 

 $\bar{x}_{t-1} + \hat{r}_{t}^{*}$ 

#### **Decoded Residual (an example)**



Amplified with a factor of 5

## **Intra Coding**



Our intra-coding used image compression network from Cheng, *et al.* (Learned Image Compression with Discretized Gaussian Mixture Likelihoods and Attention Modules, 2020)

## **Motion / Residual Compressor**



The motion / residual compressors are taken from the design of Minnen, et al. (Joint Autoregressive and Hierarchical Priors for Learned Image Compression, 2019)

#### **Experiments - More Results**

