

¹Institute for Infocomm Research (I²R), A*STAR, Singapore, ²Artificial Intelligence, Analytics And Informatics (AI3), A*STAR, Singapore, ³Nanyang Technological University (NTU), Singapore

Continual Learning

- What is Continual Learning? Continual learning allows neural networks (NN) to learn
 - A sequence of tasks **incrementally**
 - Avoid catastrophic forgetting of preceding tasks
- Why Continual Learning?
 - Past task data is **no longer available** / limited storage
 - Default training on new (task) data leads to **forgetting** of old task
- Consider the Continual Learning (CL) **context:**
 - A sequence of *N* classification tasks $\{T_1, T_2, \dots, T_N\}$; Each task T_k comprising of N_k samples and $N_{T\nu}$ class labels
- Let $D_{T_k} = \{X_1, X_2, \dots, X_{N_k}\} \subset \Re^{a \times b \times c}$ be the set of training image samples for task T_k , with arows, **b** columns, and **c** channels
- Training data for the classification task T_k can be defined as collection of tuples, each containing input and the corresponding class label, $\{\langle X_1, y_1 \rangle, ..., \langle X_{N_k}, y_{N_k} \rangle\}$, with class labels $\forall y_i \in \{0, 1, ..., N_{T_k} - 1\}$

Key Contributions

- Design a task-agnostic approach that uses Base-**Child** hybrid setup to incrementally learn tasks while mitigating forgetting
- Effective co-existence and retention of **knowledge**, enabling intra and inter task separation using reference points
- Boundary points sampling for selective latent space replay
- Automatic task identification using distance of features from reference points
- Outperform state-of-the-art various regularization and replay CL algorithms in terms of **accuracy, by 50% and 7%** with homogeneous and heterogeneous tasks, respectively, in taskagnostic scenarios

Acknowledgements

We would like to thank I²R A*STAR for the financial support through SC20/19-128310-CORE.

Task-Agnostic Continual Learning Using Base-Child Classifiers

Pranshu Ranjan Singh¹, Saisubramaniam Gopalakrishnan¹, Qiao ZhongZheng^{1,3}, Ponnuthurai N. Suganthan³, Ramasamy Savitha^{1, 2}, ArulMurugan Ambikapathi^{1, 2}

Fig. 1: Block diagram for the proposed approach, Task-Agnostic Continual Learning using Base-Child Classifiers

Selection of Reference Points

Created for each class (act as **class means/centroids)** in a given task to ensure well **defined inter-class separation** as well as **inter**task separation

• For each class in task T_k , a reference point is created; Table $R_{T_{\nu}}$ of dimension $N_{T_{\nu}} \times s$ (latent space dimension *s*)

Base Classifier

 Classifier network that performs classification exclusively for the current task T_k

Cross-entropy loss (on softmax or class) probabilities)

$$L_{CE} = -\frac{1}{N_k} \sum_{i=1}^{N_k} y_i . \log(\widehat{y}_i)$$

 Clustering loss (on latent space (LS)) MAE between LS and class-specific reference point

$$L_{MAE} = \frac{1}{N_k} \sum_{i=1}^{N_k} |\widehat{ls_i} - R_{T_k}[y_i]|$$

Weighted loss

 $L_{weighted} = w_1 L_{CE} + w_2 L_{MAE}$

Boundary Points Sampling

• Selective samples from $D_{T_{\nu}}$ and their **corresponding LS vectors** are stored in memory for replay to train the continual LS Reconstructor

• Locate $(X_i, \widehat{ls_i})$ pairs situated at the **boundary of each class** cluster, by selecting top p% samples whose LS vectors are farthest from one another in the training set (for each class / cluster)

Latent Space Reconstructor

Child Classifier

- classifier

Automated Task Inference

• Let $S_{T_{\nu}}$ be the set of all sampled pairs, $S_{T_{k}} = \{ (X_{i}, \widehat{ls_{i}}) \in B_{T_{k}} \}, \text{ where } B_{T_{k}} \text{ be the set of }$ indices lying on the class boundaries for task T_k

• S_{all} be the collection of boundary points (across all classes in a task and for all tasks T_1, T_2, \dots, T_k), $S_{all} = \bigcup_{i=1}^k S_{T_i}$

LS Reconstructor is continually trained that takes a sample X_i as input and is optimized to provide the corresponding LS $\hat{ls_i}$ using MAE loss

$$L_{rec} = \frac{1}{n(S_{all})} \sum_{j=1}^{n(S_{all})} |\hat{ls_j} - \hat{ls_j}|$$

Extension to the LS Reconstructor

• Takes the latent space embedding/vector ls_i (output of frozen LS Reconstructor model trained till task T_k), and **attaches the classification head** of the specified base

• Compute test accuracies for tasks T_1, T_2, \dots, T_k

Child classifier requires the knowledge of task identifier (ID) to select the respective classification head (from base classifiers)

Automatic Task Inference (TI) using Reference points (*task-agnostic*): Task ID corresponding to smallest distance between the current test sample' latent space vector ls_i and all reference points in R_{T_1} , R_{T_2} , ..., R_{T_k}

Dataset

Experimental Setup and Metrics

- layers (softmax for classifier)

Experimental Results

Method	Without Task ID		With Task ID	
	ACC	BWT	ACC	BWT
SFT	0.1818	-0.8669	0.6258	-0.3130
JT	0.5984	-0.1274	0.8697	0.0003
EWC [11]	0.1799	-0.8567	0.8004	-0.0615
SI [20]	0.1795	-0.8552	0.8217	-0.0419
LwF [16]	0.1854	-0.0003	0.8549	-0.0132
GR with VAE	0.1797	-0.7769	0.7521	-0.1211
A-GEM [14]	0.2454	-0.2834	0.8170	-0.0901
Ours - argmax	0.2196	-0.3122	-	-
Ours - TI	0.7328	-0.1071	0.7416	-0.1215

Method	Without Task ID		With Task ID	
	ACC	BWT	ACC	BWT
SFT	0.4941	-0.6165	0.6020	-0.4007
JT	0.8115	0.0306	0.8122	0.0046
EWC [11]	0.5027	-0.5553	0.6650	-0.2324
SI [20]	0.5060	-0.5840	0.6342	-0.2957
LwF [16]	0.3177	-0.2121	0.7726	-0.1487
GR with VAE	0.6997	-0.1582	0.7412	-0.0998
A-GEM [14]	0.6401	-0.3371	0.7527	-0.1336
Ours - argmax	0.7688	-0.0978	-	-
Ours - TI	0.7335	-0.1690	0.7697	-0.0965

Proposed a **task-agnostic** CL classification method using Base-Child hybrid networks

- reference points

Poster Number

3087

Experimental Results and Discussion

 Split-Cifar10 (homogeneous); 5 classification tasks, each comprising of 2 classes (binary classification).

• **Cifar10-MNIST** (heterogeneous); 2 classification tasks, each comprising of 10 classes

Network architecture for Base classifier and LS **Reconstructor:** 5 conv. layers (stride 2, except first), batch-norm and ReLU activation followed by 2 dense

• LS dimension, s = 128, sampling percentage p = 10%, Loss weights (w1, w2): (0.1, 1) for Split-Cifar10 and (1, 1) for Cifar10-MNIST, Adam optimizer (with lr 0.001)

• Evaluation: Standard CL metrics Average Accuracy (ACC) and **Backward Transfer** (BWT)

Table 1: Split-Cifar10 results averaged over 3 runs.

Table 2: Cifar10-MNIST results averaged over 3 runs.

Proposed approach outperform all baseline **methods** for without task **ID** scenario on both Split-Cifar10 (by **50%)** and Cifar10-MNIST (by 7%)

Conclusion

Learn shared representations across tasks

Effective co-existence and retention of knowledge Enable intra-task and inter-task separation using

Best performance on both homogeneous and **heterogeneous tasks** in task-agnostic setting as compared to baseline methods