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• Art investigations of paintings use different imaging systems: 

visual light photography (VIS), infrared reflectography (IRR), 

ultraviolet fluorescence photography (UV), and x-radiography (XR)

• Image registration to align the multi-modal images

• Visual features not necessarily visible by all modalities

• Use features of the crack structure due to their good visibility

Introduction

Multi-Modal Painting Dataset

• Detection task: 8730 (train) and 1992 (val) points for each 

modality (VIS, IRR, UV, XR) and class (craquelure, background)

• Description task: 5820 (train) and 2656 (val) point 

correspondences per domain (VIS-IRR, VIS-UV, VIS-XR)

• Evaluation: 15 (val) and 39 (test) image pairs with ground truth 

homographies computed using 40 point pairs each

Comparison of CraquelureNet to State of the Art

• Most correct matches for all domains (Fig. 4)

• Achieves highest success rate, repeatability, and matching score 

for all domains, with highest gain for VIS-XR (Tab. 1)
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ReferencesTable 1: Quantitative evaluation for the VIS-IRR, VIS-UV and VIS-XR test image pairs: Homography
estimation (success rate of mean squared error of control points for error thresholds ε = {3, 5, 7}), 
detector repeatability (Rep), and RANSAC matching inlier score (MIR) at ε = 5.

Figure 1: Multi-modal registration 

using CraquelureNet.

(a-d) Multi-modal images (VIS, 

IRR, UV, XR) of one painting

(e-g) Image fusion of registered 

images by CraquelureNet

(h) Heatmap of CraquelureNet and

extracted keypoints for VIS-XR

Figure 4: Qualitative results for image registration using CraquelureNet (c,j,q) and feature matching 

using CraquelureNet (g,n,u) or the competing methods for VIS-IRR, VIS-UV, and VIS-XR (test set)..

• CNN to jointly learn a cross-modal keypoint detector and 

descriptor using craquelure features

• Best registration results for the multi-modal dataset

• Future work: deep learning methods for the keypoint matching, 

outlier removal, and homography estimation

Conclusion
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• Keypoints extracted from upscaled confidence heatmap

• Bilinear interpolation of descriptors at refined keypoint positions

Homography Estimation

• Mutual nearest neighbor matching of descriptors

• Estimation of homographies using RANSAC [2]

Figure 3: Inference of CraquelureNet using larger input sizes, extraction of keypoints and descriptors.

CraquelureNet is a convolutional neural network (CNN) consisting of 

a ResNet [1] backbone and two heads.

Joint Training of Keypoint Detector and Descriptor Heads

• Binary cross-entropy loss for keypoint detector learning

• Bidirectional quadruplet loss for cross-modal descriptor learning

CraquelureNet

Figure 2: CraquelureNet: Joint training of detector and descriptor (patch-based).
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Influence of Descriptor Loss for CraquelureNet

Figure 5: Influence of descriptor loss for the validation set: Contrastive loss (Con), Triplet loss (Trip), 

Bidirectional triplet loss (TripB) [6], Quadruplet loss with randomly selected fourth component

(QuadRnd), and our bidirectional quadruplet loss (QuadB).

Hard negative mining using

bidirectional quadruplet loss:
• Highest RANSAC matching

inlier ratio (MIR) 

• Highest success rate (SR) of

mean squared error of control 

points (MSE-PTS)

Image source of input image (IRR): Lucas Cranach the Elder, Portrait of Katharina of Bora (Detail), Wartburg-Stiftung Eisenach, Cranach 
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Ausgleichsfonds/Bayerische Staatsgemäldesammlungen, Gm 19, all rights reserved; (h),(i) Lucas Cranach the Elder, Portrait of Martin Luther, 
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Image sources: (a–d) Nuremberg Painter, 

Saint Margaretha (Detail), Germanisches

Nationalmuseum, Nuremberg, Gm 119, all 

rights reserved

CraquelureNet Inference

Tested methods: SIFT [3], D2-Net [4], AffNet [5] + Hardnet [6], SuperPoint [7]; 

AffNet+Hardnet and SuperPoint were also fine-tuned on our multi-modal painting dataset


