
CraquelureNet: Matching the Crack Structure in Historical Paintings for Multi-Modal Image Registration

Aline Sindel^{1,2}, Andreas Maier¹, and Vincent Christlein¹

¹Pattern Recognition Lab, FAU Erlangen-Nürnberg, Erlangen, Germany

Introduction

- Art investigations of paintings use different imaging systems: visual light photography (VIS), infrared reflectography (IRR), ultraviolet fluorescence photography (UV), and x-radiography (XR)
- Image registration to align the multi-modal images
- Visual features not necessarily visible by all modalities
- Use features of the crack structure due to their good visibility

CraquelureNet

CraquelureNet is a convolutional neural network (CNN) consisting of a ResNet [1] backbone and two heads.

Joint Training of Keypoint Detector and Descriptor Heads

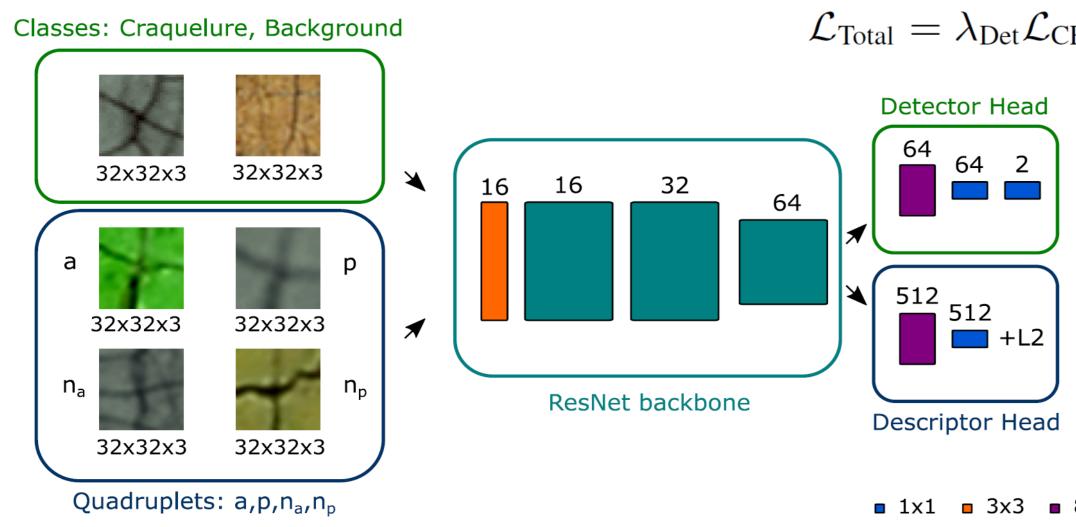


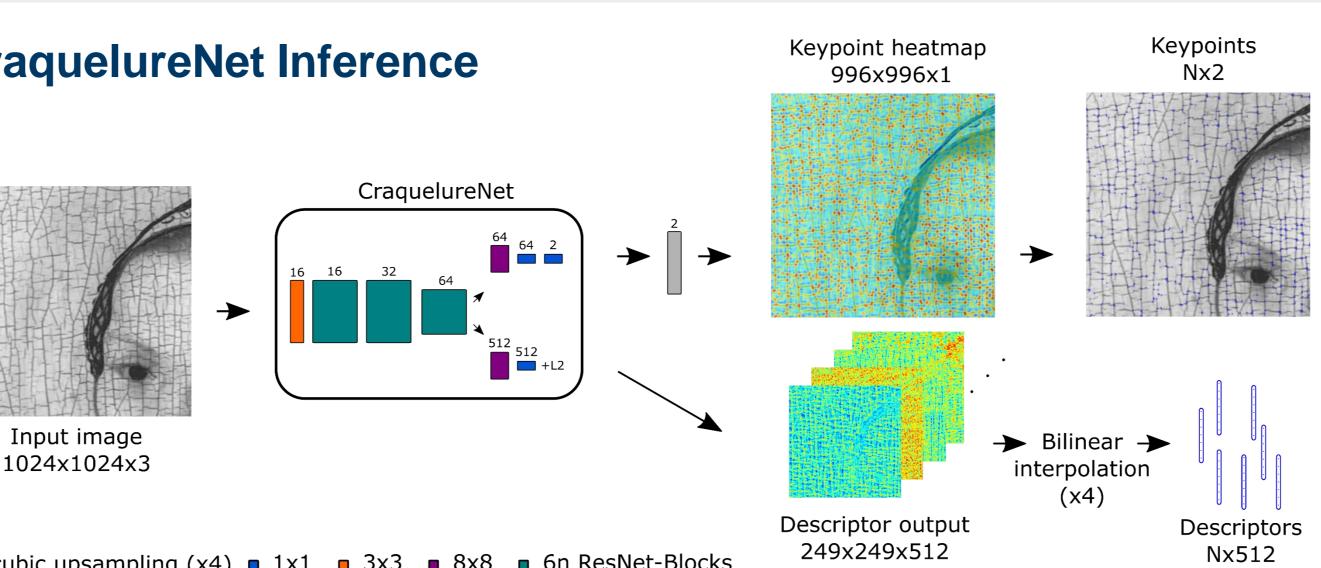
Figure 2: CraquelureNet: Joint training of detector and descriptor (patch-based).

• Binary cross-entropy loss for keypoint detector learning Bidirectional quadruplet loss for cross-modal descriptor learning

 $\mathcal{L}_{\text{QuadB}}(a, p, n_a, n_p) = \max[0, m + d(a, p) - d(a, n_a)]$ $+ \max[0, m + d(p, a) - d(p, n_p)],$ **2021 IEEE International Conference on Image Processing** 19-22 September 2021 • Anchorage, Alaska, USA

²Germanisches Nationalmuseum, Nuremberg, Germany

CraquelureNet Inference


Figure 1: Multi-modal registration

(a-d) Multi-modal images (VIS, IRR, UV, XR) of one painting (e-g) Image fusion of registered images by CraquelureNet (h) Heatmap of CraquelureNet and extracted keypoints for VIS-XR

Image sources: (a-d) Nuremberg Painter, Saint Margaretha (Detail), Germanisches Nationalmuseum, Nuremberg, Gm 119, all

 $\mathcal{L}_{\text{Total}} = \lambda_{\text{Det}} \mathcal{L}_{\text{CE}} + \lambda_{\text{Desc}} \mathcal{L}_{\text{QuadB}},$ Detector Loss → (Descriptor Loss)

■ 1x1 ■ 3x3 ■ 8x8 ■ 6n ResNet-Blocks

■ Bicubic upsampling (x4) ■ 1x1 ■ 3x3 ■ 8x8 ■ 6n ResNet-Blocks

Figure 3: Inference of CraquelureNet using larger input sizes, extraction of keypoints and descriptors. Image source of input image (IRR): Lucas Cranach the Elder, Portrait of Katharina of Bora (Detail), Wartburg-Stiftung Eisenach, Cranach

Digital Archive, DE WSE M0064, all rights reserved

- Keypoints extracted from upscaled confidence heatmap
- Bilinear interpolation of descriptors at refined keypoint positions

Homography Estimation

- Mutual nearest neighbor matching of descriptors
- Estimation of homographies using RANSAC [2]

Results and Discussion

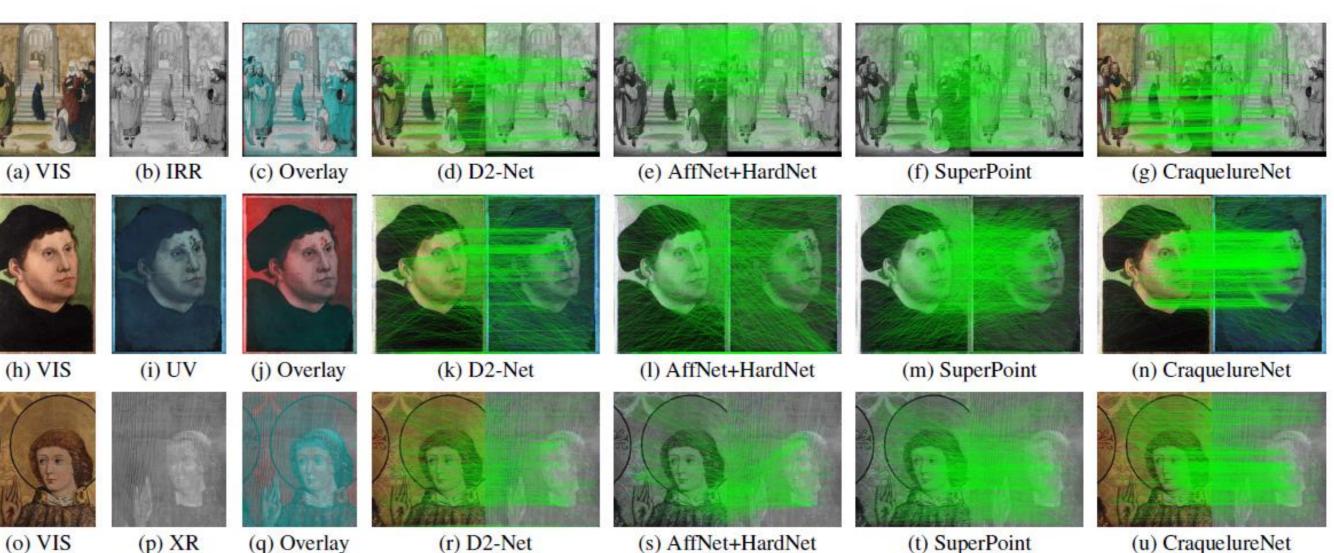
Multi-Modal Painting Dataset

- Detection task: 8730 (train) and 1992 (val) points for each modality (VIS, IRR, UV, XR) and class (craquelure, background)
- Description task: 5820 (train) and 2656 (val) point correspondences per domain (VIS-IRR, VIS-UV, VIS-XR)
- *Evaluation:* 15 (val) and 39 (test) image pairs with ground truth homographies computed using 40 point pairs each

Comparison of CraquelureNet to State of the Art

- Most correct matches for all domains (Fig. 4)
- Achieves highest success rate, repeatability, and matching score for all domains, with highest gain for VIS-XR (Tab. 1)

Table 1: Quantitative evaluation for the VIS-IRR, VIS-UV and VIS-XR test image pairs: Homography estimation (success rate of mean squared error of control points for error thresholds $\varepsilon = \{3, 5, 7\}$), detector repeatability (Rep), and RANSAC matching inlier score (MIR) at $\varepsilon = 5$.


Dataset	VIS-IRR						VIS-UV					VIS-XR				
Metrics [%]	Success rate			Rep	MIR	Success rate			Rep MIR	MIR	S	ate	Rep	MIR		
Error threshold	$\epsilon = 3$	$\epsilon = 5$	$\epsilon = 7$	$\epsilon = 5$	$\epsilon = 5$	$\epsilon = 3$	$\epsilon = 5$	$\epsilon = 7$	$\epsilon = 5$	$\epsilon = 5$	$\epsilon = 3$	$\epsilon = 5$	$\epsilon = 7$	$\epsilon = 5$	$\epsilon = 5$	
SIFT	23.1	23.1	23.1	18.5	6.5	15.4	23.1	23.1	21.8	12.9	0.0	0.0	0.0	14.9	0.8	
D2-Net	15.4	53.8	84.6	19.6	37.4	23.1	46.2	61.5	20.4	36.3	0.0	15.4	15.4	14.6	11.0	
AffNet+Hardnet	30.8	46.2	69.2	22.8	17.8	30.8	53.8	69.2	28.0	27.4	0.0	0.0	0.0	17.7	2.7	
AffNet+Hardnet (fine-tuned)	30.8	61.5	61.5	23.2	20.2	30.8	38.5	38.5	28.2	28.3	0.0	0.0	0.0	17.6	3.4	
SuperPoint	46.2	69.2	69.2	25.9	26.3	30.8	61.5	69.2	21.9	30.1	0.0	0.0	0.0	19.6	0.8	
SuperPoint (fine-tuned)	30.8	38.5	38.5	22.9	17.1	30.8	38.5	46.2	18.8	17.9	0.0	7.7	7.7	18.9	1.1	
CraquelureNet	53.8	69.2	84.6	43.5	68.5	38.5	69.2	84.6	37.5	61.5	23.1	38.5	53.8	32.7	41.3	
CraquelureNet (in-domain)	53.8	76.9	84.6	43.6	63.5	23.1	69.2	84.6	36.8	58.7	30.8	61.5	76.9	31.9	37.0	

Tested methods: SIFT [3], D2-Net [4], AffNet [5] + Hardnet [6], SuperPoint [7]; AffNet+Hardnet and SuperPoint were also fine-tuned on our multi-modal painting dataset

Contact: 🖂 aline.sindel@fau.de < https://lme.tf.fau.de/person/sindel/

(o) VIS

(q) Overlay

Figure 4: Qualitative results for image registration using CraquelureNet (c,j,q) and feature matching using CraquelureNet (g,n,u) or the competing methods for VIS-IRR, VIS-UV, and VIS-XR (test set)...

Image sources: (a),(b), Meister des Marienlebens, Tempelgang Mariä, Germanisches Nationalmuseum, Nuremberg, on Ioan from Wittelsbacher Ausgleichsfonds/Bayerische Staatsgemäldesammlungen, Gm 19, all rights reserved; (h),(i) Lucas Cranach the Elder, Portrait of Martin Luther, Lutherhaus Wittenberg, Cranach Digital Archive, DE LHW G163, all rights reserved; (o),(p) Nuremberg Painter, Detail of Laurentius, Germanisches Nationalmuseum, Nuremberg, on Ioan from Evang.-Luth. Kirchengemeinde Nürnberg, St. Lorenz, Gm 152, all rights reserved

Influence of Descriptor Loss for CraquelureNet



Figure 5: Influence of descriptor loss for the validation set: Contrastive loss (Con), Triplet loss (Trip), Bidirectional triplet loss (TripB) [6], Quadruplet loss with randomly selected fourth component (QuadRnd), and our bidirectional quadruplet loss (QuadB).

Conclusion

- descriptor using craquelure features
- outlier removal, and homography estimation

References

[1] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," Proc. IEEE CVPR 2016, pp. 770–778, 2016 [2] M. A. Fischler and R. C. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography," Commun. ACM, pp. 381–395, 1981 [3] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," IJCV, pp. 91–110, 2004 [4] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and T. Sattler, "D2-Net: A Trainable CNN for Joint Description and Detection of Local Features," Proc. IEEE CVPR 2019, pp. 8084–8093, 2019 [5] D. Mishkin, F. Radenovic, and J. Matas, "Repeatability Is Not Enough: Learning Affine Regions via Discriminability," Proc. ECCV 2018, pp. 284–300, 2018 [6] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, "Working hard to know your neighbor's margins: Local descriptor learning loss," Proc. NIPS 2017, pp. 4826–4837, 2017 [7] D. DeTone, T. Malisiewicz, and A. Rabinovich, "Super-Point: Self-Supervised Interest Point Detection and Description," Proc. IEEE CVPR Workshops 2018, 2018

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

FACULTY OF ENGINEERING

- Hard negative mining using bidirectional quadruplet loss: Highest RANSAC matching inlier ratio (MIR) Highest success rate (SR) of mean squared error of control
 - points (MSE-PTS)

• CNN to jointly learn a cross-modal keypoint detector and Best registration results for the multi-modal dataset • Future work: deep learning methods for the keypoint matching,