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ABSTRACT

Cervical carcinoma is a common type of cancer in the female
reproductive system. Early detection and diagnosis can fa-
cilitate immediate treatment and prevent progression of the
disease. However, in order to achieve better performance,
DL-based algorithms just stack various layers with low in-
terpretability. In this paper, a robust and reliable Nuclear
Density Distribution Feature (NDDF) based on priors of the
pathologists to promote the Cervical Histopathological Im-
age Classification (CHIC) is proposed. Our proposed method
combines the nucleus mask segmented by U-Net with the seg-
mentation grid-lines generated from pathology images utiliz-
ing SLIC to obtain the NDDF map, which contains informa-
tion about the morphology, size, number, and spatial distri-
bution of nuclei. The result shows that the proposed model
trained with NDDF maps has better performance and accu-
racy than that trained on RGB images (patch-level histopatho-
logical images). More significantly, the accuracy of the two-
stream network trained with RGB images and NDDF maps is
steadily improved over the corresponding baselines of differ-
ent complexity.

Index Terms— Nuclear Density Distribution, Superpixel,
Deep Learning, Histopathological Image Classification

1. INTRODUCTION

In the training of traditional fully supervised deep learning
methods, digital pathology images are fed directly into the
model for efficient training, and then the trained model is
leveraged on the test set to rapidly diagnose[1]. Neural net-
works can learn color, texture, and other information well
from RGB images. Nevertheless, owing to inconsistent de-
grees of staining, messy nuclei, and complex fields of view,
the network could learn invalid information, resulting in the
need for more complex networks and larger training datasets
to get good results. Meanwhile, a crucial problem facing deep
learning is the lack of general theory in that interpretation for
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the network design which is essential in the medical field.
Therefore, it makes sense to extract features based on the prior
knowledge of pathologists to improve the performance of the
model. Some methods have explored cervical cancer diag-
nosis using digital image processing techniques to facilitate
histopathological image classification by extracting features
such as morphology and number of cell nuclei[2, 3, 4]. But
there has never been a comprehensive and integrated feature
that does not affect the performances of the model to represent
histopathological images.

Fig. 1. Processing steps of the proposed approach. A: The
U-Net structure-like neural network model ANet segments
the nucleus mask. B: SLIC is utilized to generate segmenta-
tion grid-lines from histopathological images. C: The nucleus
density is calculated in each region. D: The DNet model con-
tains a 5-layer convolutional neural network for training uti-
lizing NDDF maps.

The nuclei distribution feature of the epithelium region



is completely different in normal and cancerous images: the
nuclei in normal epithelial tissues are densely to sparsely dis-
tributed, with a clear direction of distribution; in cancerous
epithelial tissues, there is no such clear direction of growth,
and sometimes even the base cannot be distinguished. More-
over, nuclear atypia is characterized by the enlargement of
the nucleus, resulting in the different shape and size of the
nucleus in the epithelium region, which is another important
feature of cervical cancer in addition to the gradual increase
in the number of atypical cells [5]. Therefore, we propose a
method to calculate the nucleus density in each region, utiliz-
ing segmentation grid-lines generated based on the SLIC al-
gorithm which can combine information on the morphology,
size, number and spatial distribution of nuclei.

Our method is inspired by how pathologists observe
histopathological images to make diagnoses. In order to sim-
ulate pathologists’ behaviour, we adopt the idea of a deep
learning framework for extracting features and identifying
diseases. Our framework consists of three stages. The first
stage contains the U-Net structure-like neural network to
segment nucleus from RGB images [6]. The labels are ob-
tained by the threshold-based segmentation method and then
processed by image denoising. The second stage is the ex-
traction of NDDF maps using the SLIC algorithm. The third
stage is composed of a two-stream network trained with the
NDDF map and the RGB image. Pathologists classify the
histopathological images of the epithelium region into well,
moderately, and poorly differentiated stages, and then use the
diagnosis as a label for the deep learning model. For the task
of training on a small percentage of samples and testing on
a large percentage of samples, training the two-stream neu-
ral network model over both RGB images and NDDF maps
achieves a higher accuracy with little impact on the speed of
classification.

2. METHODOLOGY

The current mainstream approach is to train deep learning
models directly on RGB images. But these works could learn
invalid information from RGB images, and they require larger
data sets or more complex neural networks to achieve better
results [7]. To tackle this issue, we propose the nuclear den-
sity distribution feature (NDDF) to further improve the per-
formance of the deep learning model. In this section, we will
describe the process of segmenting the nucleus mask from the
pathology image, and then extracting the NDDF from mask
maps utilizing the superpixel algorithm, finally training the
deep learning model on NDDF maps. The overall framework
is shown in Fig. 1.

2.1. The nucleus segmentation

Histopathology images are labeled by the pathologists and di-
vided into three types of data at a magnification of 20×. No

additional labeling is done by pathologists except for cate-
gory labeling. In our experiments, the size of each patch is
512 × 512. Since we end up with a 32 × 32 sized feature
map, as shown in Fig. 1C, the nucleus segmentation perfor-
mance has little effect on the final classification results. U-
Net could perform well in the field of medical image segmen-
tation, learning a robust edge extraction model with a small
amount of data [8]. We train the U-Net structure-like neu-
ral network model ANet (Fig. 1A) with the publicly avail-
able datasets MoNuSeg [9] and TNBC [10] to segment nuclei
masks on histopathological images [11]. The right half of the
ANet contains five blocks, all of which are up-sampled. The
feature maps from each up-sampling are concatenated with
the feature maps output from the corresponding layer on the
left. The concatenated feature map is then fed into the next
decode block [12]. Nucleus masks of the same size as the
input image are finally detected.

(a) (b) (c)

Fig. 2. (a) Superpixel grid-lines. (b) NDDF based on the
SLIC. (c) NDDF based on the square grids.

2.2. Extraction of density distribution feature

After acquiring nucleus masks, the next step is to generate the
NDDF matrix, which is implemented in our approach utiliz-
ing the simple linear iterative clustering (SLIC) algorithm, as
shown in Fig. 1B. In the CIELAB color space, each pixel is
considered as a five-dimensional vector (a, b, c, x, y), where
the first three dimensions contain LAB color space informa-
tion and the last two dimensions contain pixel position infor-
mation. The SLIC algorithm first converts the RGB image
to CIELAB color space, then initializes K seed pixels on the
image, and calculates the superpixel distance S =

√
(N/K)

(N is the pixel number). Next, under the metric distance,
center each seed pixel to find the center of the nearest super-
pixel region within the surrounding 2S × 2S range [13] and
determine which superpixel each pixel belongs to, with the
following details:

dc =
√

(aj − ai)2 + (bj − bi)2 + (cj − ci)2

ds =
√
(xj − xi)2 + (yj − yi)2

D =

√
(
dc
Nc

)2 + (
ds
Ns

)2

(1)



Where i and j denote two pixels for distance comparison,
and dc and ds are the color distance and pixel distance, re-
spectively. Ns = S =

√
(N/K), and Nc is directly defined

as a constant 5, which is used to standardize ds and dc.
After determining the pixel class based on the calculated

metric distance, the five-dimensional average of each cate-
gory of pixels is taken as the center of the new superpixel and
is used to calculate the residuals between the current epoch of
classification and the previous epoch. Finally, the above pro-
cess is repeated continuously until the residuals converge to
zero. From this, we can obtain a 32x32 matrix on the patho-
logical image by setting the value of K to 1024. In order to
calculate the nuclear density Ti within each superpixel block,
we combine the seg-grid-lines (superpixel segmentation grid-
lines) generated by SLIC with the nucleus mask (Fig. 1C), as
follows:

Ti =

∑N
j=1 nij∑M
j=1 sij

i ∈ K (2)

Where ni is the area of the nucleus in each region, which
is the number of white pixels, and si is the area of each region,
which is the number of region pixels.

The brightness value of each superpixel block in the fea-
ture map corresponds to the density value of nuclei in each
region, as shown in Fig. 2. SLIC generates the superpix-
els along the nucleus boundaries, and the clustered nuclei are
contained intactly in the same superpixel. Comparing Fig. 2b
and Fig. 2c, in the superpixel-processed digital histopathol-
ogy image, the basal edge is clear and intact, while the square
grid method of directly dividing the image area disrupts the
boundary both of the nucleus and the basal area in the local
area, making it difficult to discern the direction of nucleus
distribution[14].

2.3. The NDDF classification model

The number, location and size of nuclei in epithelium region
are meaningful indicators for pathologists to diagnose cervi-
cal cancer. Therefore, the method proposed by us extracts
the NDDF in patches of epithelial histopathology images and
then feeds them into a deep learning model for training. We
design a model DNet (Fig. 1D) containing a 5-layer con-
volutional neural network for training utilizing NDDF maps.
Last layer is a fully connected layer. The experimental re-
sults show that training DNet classification utilizing a small
amount of NDDF maps is fast and accurate. However, only
the information in the NDDF is not enough; color and tex-
ture information are also important, so we also leverage the
histopathological images to train the neural network model.
In order to verify the validity of the density distribution fea-
ture for cervical cancer diagnosis, we select models of differ-
ent complexity as the baseline for training RGB images, in-
cluding DNet, VggNet16 [15], ResNet50 [16], and SeNeXt50
[17, 18]. We then fuse the baseline and DNet models into the

Fig. 3. The structure of the two-stream network

two-stream network, inputting RGB images and NDDF maps
for training, respectively. As shown in Fig. 3, in the struc-
ture of the two-stream network, the outputs of baseline and
DNet are fused together. In addition, a new FC layer is added
to the classifier layer of DNet before.The FC layer is com-
bined with the Sigmoid function to produce a weight vector,
which is then dot-multiplied by the baseline output features.
And then we concatenate the dot-multiply result with the out-
put features of DNet. Finally, the results of the max function
output are classified as follows:

Predict = max{σ(outD) · outB,outD} (3)

where outD is the output features of the DNet, outB
is the output features of the baseline model, and σ(·) is the
Sigmoid activation function. The maximum value of each
channel feature is obtained by the max operation, the fusion
feature Predict is input into the classification layer.

Table 1. The performance of DNet for classification of the
RGB image, the Grid map and the NDDF map respectively

Input Model Recall(%) Precision(%) F1-score(%) Accuracy(%)

RGB image DNet 83.70 77.27 80.30 76.79

Grid map DNet 77.90 76.37 77.14 73.81

NDDF map DNet 88.79 83.95 86.30 84.04



Table 2. The performance of four baselines with their corresponding two-stream networks

Model Dataset FPS
2-class 3-class

Recall(%) Precision(%) F1-score(%) Accuracy(%) Recall(%) Precision(%) F1-score(%) Accuracy(%)

DNet RGB 196 83.70 77.27 80.36 76.79 60.34 61.82 57.63 70.71

VggNet16 RGB 68 72.86 76.81 72.66 79.16 70.47 75.00 71.33 75.37

ResNet50 RGB 113 82.68 89.36 85.89 84.58 77.05 78.25 77.42 82.12

SeNeXt50 RGB 63 90.32 92.20 91.25 90.19 79.09 82.85 80.00 84.90

DNet+DNet RGB+NDDF 179 84.55 90.22 87.29 86.06 69.98 74.73 70.11 78.03

VggNet16+DNet RGB+NDDF 64 88.04 87.14 87.52 88.26 77.44 78.29 77.68 81.43

ResNet50+DNet RGB+NDDF 109 93.20 88.83 90.97 89.52 80.05 81.85 80.69 84.80

SeNeXt50+DNet RGB+NDDF 59 92.53 93.32 92.92 92.01 81.90 84.03 82.60 86.06

The dot product operation weights the output features of
the baseline as an attention mechanism leveraging the DNet
implementation to improve the performance of the baseline
model [19]. The max operation can combine the valid infor-
mation learned from the two networks to improve the classi-
fication performance. It was found that the two-stream model
significantly improves the performance compared to the cor-
responding baseline, while the speed barely decreases for in-
ferring.

3. EXPERIMENT

The dataset used for the experiment is a dataset of cervical
histopathology images collected from a collaborating hospi-
tal. It contains multiple data sources, all of which are an-
notated by pathologists. The experimental data consists of
patches containing varying proportions of cervical epithelium
intercepted from 84 digitized histopathology images, which
are labeled by the experts, of which 34 are well differentia-
tion stage, 25 are moderately differentiation stage, and 25 are
poorly differentiation stage. The size of the original image is
512 × 512, and the size of the NDDF map is 32 × 32. All
evaluations and comparisons reported in this section are done
on the test set.

In our experiments, we train the DNet model separately
utilizing three types of data: digital histopathological images,
nucleus density distribution maps generated with square grid,
and SLIC-based NDDF maps. We randomly split the dataset,
by patients, into training, and test sets, with ratio 2:8. Sam-
ples are randomly selected from each category to obtain the
same number of samples from each class for training and test-
ing. We set the same hyperparameter during model training to
ensure that the variation is due only to the density distribution
feature. In order to provide a comprehensive comparison, we
report the quantitative evaluation scores obtained by training
the DNet model with each data, including the accuracy, recall,
precision and F1 scores.

The density distribution feature is extracted based on the
prior knowledge of pathologists in diagnosing cervical can-
cer on pathological images and the SLIC algorithm is able

to take good account of morphological and size features of
the nuclei. As shown in Table 1, the NDDF maps performed
the best among the three data results. This indicates that the
information contained in the NDDF is discriminative. We
achieve an accuracy of up to 84.04% by training a 6-layer
neural network leveraging NDDF maps. To verify the robust-
ness of this method, we utilize four different baselines, in-
cluding DNet, VggNet16, ResNet50 and SeNeXt50, with the
same hyperparameters, to do the 2-classification task and the
3-classification task, respectively, and the final performance
is shown in Table 2.

As can be seen in Table 2, the NDDF extracted brings
clear benefits to all the metrics evaluated, and our two-stream
model achieves better results in all metrics. More importantly,
the effect of our proposed method of two-stream networks is
robust and its classification performance is improved under
different baselines. This indicates that the two-stream model
can learn valid and complementary information from RGB
images and NDDF maps to improve the classification perfor-
mance of histopathology images. Also from Table 2, it can be
seen that the classification speed of the two-stream network
using RGB images and NDDF maps did not decrease signifi-
cantly. The NDDF based on the superpixel algorithm is robust
for the classification of cervical pathology images.

4. CONCLUSION

In this paper, we present an approach to extract the robust
NDDF based on U-Net and SLIC algorithm for improving the
performance of digital pathology image classification. Due to
the complexity and the heterogeneity of digital histopatho-
logical images, the previous works are not valid to learn the
discriminative features and the prior knowledge of patholo-
gists in diagnosing cervical cancer is discovered to promote
the model performance. Therefore, both RGB images and
NDDF maps are as the inputs to train the two-stream net-
work for histopathological images. Comprehensive experi-
ments demonstrate that the classification accuracy of cervical
tissue pathology images are improved by the proposed ap-
proach comparing with several methods.
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