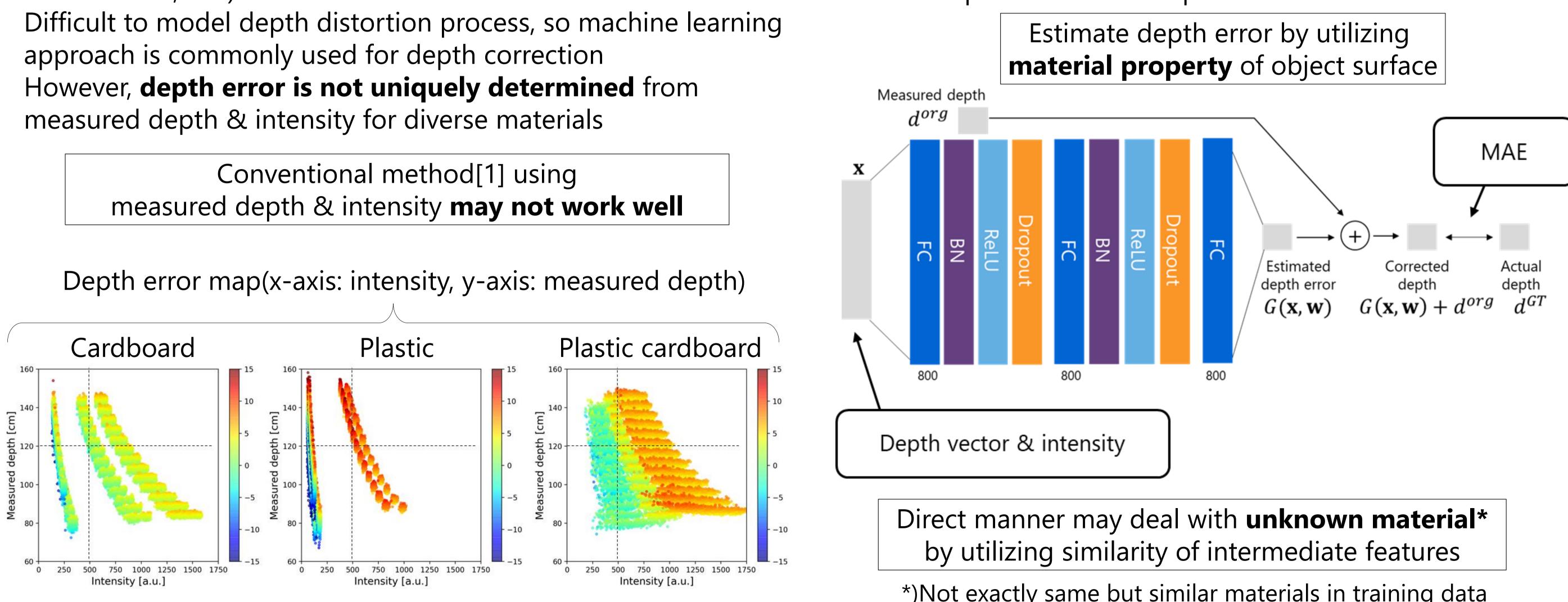


Depth Correction for Time-of-Flight Camera Using Depth Distortion Dependency on Pulse Width of Irradiated Light


- trip time of light
- measurement system
- stereo camera

2. Drawback of ToF camera: Depth Distortion

- A kind of depth error depending on material of object Mainly caused by optical phenomenon (reflection, scattering, transmission, etc.)
- approach is commonly used for depth correction measured depth & intensity for diverse materials

Conventional method[1] using

[1] P. Fuersattel et al.(2017), "Distance error correction for time-of-flight cameras" [2] Y. Iwaguchi et al. (2016), "Classification of Translucent Objects Using Distance Measurement Distortion of Time-of-Flight Camera as a Cue" [Translated from Japanese.] [3] K. Tanaka et al. (2017), "Material Classification Using Frequency- and Depth-Dependent Time-of-Flight Distortion"

Tenta Sasaya^{*}, Wataru Watanabe, Toshiyuki Ono (Corporate Research & Development Center, Toshiba Corporation)

3-2. Our Method: Depth Correction

3-layer MLP (hidden layer of 800 units) Train MLP by minimizing MAE between corrected depth and actural depth

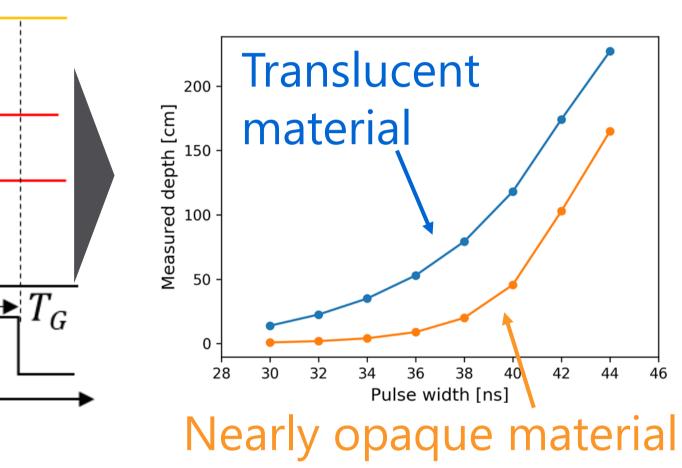
*)Not exactly same but similar materials in training data

ToF camera

- (MN34902BL)
- Pulse widths: $30,32,\dots,44ns$ (8 pattern)
- # of frames: 300
- based on depth of reference subject

Object for training data

Dataset


Depth vector

Actural depth

Measured depth

Amplitude

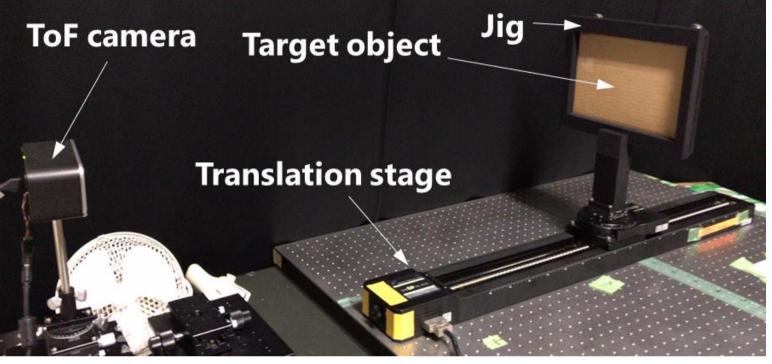
Consist of :

Examples of depth vector

Method Cardboar 3.05 / 3.69 w/o correction Method in [1] 0.55 / 1.60 Method in [1]* 0.71 / 1.3 0.43 / 0.5 Ours *Using MLP instead of Random Forest Ours outperforms conventional method Measured depth Corrected depth MAE=0.38cm MAE=2.49cm

Material in training data			MAE _{mean} on test material [cm]			
Cardboard	Plastic	Plastic Cardboard	Cardboard	Plastic	Plastic cardboard	
\checkmark			0.24	4.01 🔨	2.38	
\checkmark	\checkmark		0.33	0.82	2.28	
\checkmark		\checkmark	0.33	2.93 🖊	0.69	
Ours works well for unknown material						

Paper ID: 1818



4. Experimental Setup

Model: In-house prototype using Panasonic's ToF sensor

Calibrate measured value[a.u.] into measured depth[cm]

Material: 10 cardboards, 4 plastic boards, 8 plastic cardboards Distance from ToF camera : 85,90,..., 140cm (12 pattern) Fixed parallel to the sensor surface using photo frame-like jig

5. Results

	MAE _{mean} / M				
rd	Plastic	Plastic cardboard	AII		
9	6.57 / 9.86	5.25 / 6.83	4.25 / 9.86		
0	1.59 / 1.96	0.54 / 0.98	0.73 / 1.96		
7	0.96 / 1.63	0.61 / 1.24	0.70 / 1.63		
55	0.94 / 1.19	0.72 / 1.04	0.64 / 1.19		
Forest					

Ours works well for slightly different materials from trainging data