Depth Correction for Time-of-Flight Camera Using Depth Distortion Dependency on Pulse Width of Irradiated Light

28th IEEE International Conference on Image Processing(ICIP2021) 2021.9.19-22

Tenta. Sasaya^{*}, Wataru. Watanabe, Toshiyuki. Ono

Corporate Research & Development Center, Toshiba Corporation

Background

- •Time-of-Flight (ToF) Camera
 - A kind of 3D camera that estimates depth based on round-trip time of light
 - Low cost, high speed, and compact form due to simple measurement system
- •Drawback: Depth Distortion
 - A kind of depth error depending on material of object
 - Mainly caused by optical phenomenon (reflection, scattering, transmission, etc.)

Difficult to model depth distortion process, so machine learning approach is commonly used for depth correction

Conventional Depth Correction Method(1): [Fuersattel+,2017]

This method may not work well for diverse materials

Conventional Depth Correction Method(2): [Tanaka+,2017]

Method

- •Measure multiple depths (not 1-shot) containing material property using multiple frequencies & positions
- Estimate material, then get depth error from LUT using material as query Limitation
- •Require sweeping (camera and object are fixed in many industrial applications)
- •Performace may degrade for unknown materials (LUT includes **only known materials**)

Proposed method can overcome these limitation because of:

- 1) no sweeping in feature extraction
- 2) direct estimation w/o material classification

Proposed Method: Feature Extraction

Utilize property that depth changes with pulse width of irradiation light and material

- ✓ Measure multiple depths using multiple pulse width with fixing Gate1,2 (unusual setting)
- ✓ No sweeping unlike conventional method
- ✓ We confirmed proposed **feature vector depends on material** by formula and simulation

Measurement procedure

Results of multiple measurements

© 2021 Toshiba Corporation 4

Proposed Method: Depth Correction

Estimate depth error based on feature vector using neural network

 Direct manner may deal with unknown material* by utilizing similarity of intermediate features *Not exactly same but similar materials in training data

Experimental Setup

•ToF camera

- Model: In-house prototype using Panasonic's ToF sensor (MN34902BL)
- Pulse widths: 30,32,...,44ns (8 pattern)
- # of frames: 300
- Calibrate measured value[a.u.] into measured depth[cm] based on depth of reference object
- •Object for training data
 - Material: 10 cardboards, 4 plastic boards, 8 plastic cardboards
 - Fixed parallel to sensor surface using photo frame-like jig
 - Distance from ToF camera : 85,90,..., 140cm (12 pattern)

Evaluation for Known Materials

- •Same material for training and testing
- •Randomly selected 80% of pixels for training, remaining 20% for testing
- •Calculate MAE of each object, then evaluate mean(MAE_{mean}) and max(MAE_{max}) for each material

Method	MAE _{mean} / MAE _{max} [cm]				
	Cardboard	Plastic	Plastic cardboard	All	
w/o correction	3.05 / 3.69	6.57 / 9.86	5.25 / 6.83	4.25 / 9.86	
[Fuersattel+,2017]	0.55 / 1.60	1.59 / 1.96	0.54 / 0.98	0.73 / 1.96	
[Fuersattel+,2017]*	0.71 / 1.37	0.96 / 1.63	0.61 / 1.24	0.70 / 1.63	
Ours	0.43 / 0.55	0.94 / 1.19	0.72 / 1.04	0.64 / 1.19	

*)Using MLP instead of Random Forest

Proposed method outperform conventional method

Evaluation for Unknown Materials (1)

•These two object are not exactly same materials in training data, but similar to plastic or cardboard

Proposed method work well for slightly different materials from trainging data

Evaluation for Unknown Materials (2)

•Evaluate unknown materials by changing combination of materials in training data

Schematic image of evaluation scenario

Material in training data		MAE _{mean} on testing material [cm]			
Cardboard	Plastic	Plastic Cardboard	Cardboard	Plastic	Plastic cardboard
\checkmark			0.24	4.01 🥆	2.38
\checkmark	\checkmark		0.33	0.82	2.28
\checkmark		\checkmark	0.33	2.93	0.69
			Better MAE desipite unknown material		

Proposed method work well for unknown materials by interpolating from known material information in the feature space

Summary

♦Our method

- Feature extraction without sweeping
- Direct depth correction without material classification

Experimental Results

•Our method can deal with **unknown materials**

Future work

- •Expand target materials
- •Reduce variation in MAE between materials

Thank you

11 © 2021 Toshiba Corporation