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Deep Learning-based Speech/Audio Quality Predictors

• Mainly deals with:

1. Non-intrusive quality measurements

2. Speech at lower (e.g., 16-kHz) sampling rate

3. Models are fed with either time-domain signals or spectral domain signals (e.g., spectrograms and

Mel-scale spectrograms).

• For a comprehensive list, see the references listed in [1].

• None of the work deals with predicting the quality of coded audio.
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1J. Serrà, et al., "SESQA: semi-supervised learning for speech quality assessment,” ICASSP 2021.  



Our contributions

• Intrusive (or full-reference) coded audio quality predictor, designed to operate on:

1. General audio signal at 48-kHz sampling rate

2. Gammatone spectrograms (a perceptually-motivated spectrogram representation)

3. Completely utilize programmatically generated data.

• Mimicking the quality score predicted by a state-of-the-art objective quality metric (ViSQOL-

v3) with a deep neural network (DNN), followed by improving over it.
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ViSQOL-v3 to InSE-NET 
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Training set: (HE)-AAC as Deg.



Training Data 

• Clean (i.e., reference/un-encoded) data (12h)

• 4500 music excerpts (10h) from 10 different genres

• 900 speech excerpts (2h)

• Degraded data

• 16, 20, 24, 32, 40, 48 kbps (coded, i.e. encoded-decoded with HE-AAC)

• 80, 96, 128 kbps (coded with AAC)

• 3.5 and 7.0-kHz low-pass filtered versions of clean

• Label: ViSQOL -v3 MOS as ground truth
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Inception Block*
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*Szegedy, Christian, et al. “Rethinking the inception architecture for computer vision." CVPR. 2016.

• Adapts to different receptive field size

• Structure with four parallel branches:

• 1 x 1 conv

• n x n kernel

• m x m kernel

• Max pooling

• Concatenate the outputs of each kernel along the channel axis



Horizontal and Vertical Kernels
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Modified Inception Block for Audio

• Replace the square-shaped kernel with

vertical & horizontal rectangular-shaped

kernels (3x7, 7x3, 3x5, 5x3)

• Split the kernel into smaller ones to reduce

the number of parameters

• 3 x 7 kernel (21 param) into 3 x 1 and 1 x 7 (10

param)

• Replace max pooling by average pooling
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Squeeze & Excitation (SE) Layer*

• A special attention mechanism along channel axis

• Squeeze: use 1 x 1 conv to squeeze information along time and frequency

• Excitation: use 2 following fully connected layers and a sigmoid to boost those channels of

more importance
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*Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." CVPR. 2018.



InSE-NET Architecture

Two major changes:

• Removed the head layer 

• Replace max pooling with average pooling

• Reason:

• Head layer in original Inception was designed 

to extract features from images

• In our case, Gammatone spectrogram can be 

already viewed as a feature representation for 

audio
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Unencoded audio
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Excerpt with very low energy content in high-frequency bands



Coded at a very high bitrate
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Reason: visible but inaudible spectral hole in high-frequency region

Predicted MOS is low even though there is no audible difference



Train with visibly different but perceptually equivalent pairs 
(code at high bitrates and label MOS as 5)
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An example of a visibly different but perceptually equivalent pair

-108 dB

Original

Coded



Training with additional synthetic data 
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4.732

An example of (an easy to code) Korean speech excerpt.

HE-AAC AAC
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𝑹𝒑 𝑹𝒔

PEAQ Advanced 0.650 0.700

ViSQOL-v3 0.810 0.840

InSE-NET (mono) 0.830 0.835

Mono MPEG USAC Verification Listening Tests

Mono low-rates

For the Siefried02 excerpt: 

48.5% improvement in correlation 
coefficients

Pearson's correlation coefficient

Spearman’s Rank correlation coefficient

Codecs included in the MUSHRA tests were: AMR-WB+, HE-AAC-v1, and USAC.



Mono MPEG USAC Verification Listening Tests
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ViSQOL-v3 InSE-NET

Codecs 𝑹𝒑 𝑹𝒔 𝑹𝒑 𝑹𝒔

AMR-WB+ 0.877 0.862 0.889 0.856

HE-AAC 0.836 0.792 0.853 0.791

USAC 0.853 0.881 0.873 0.881

Codecs included in the MUSHRA tests were AMR-WB+, HE-AAC-v1, and USAC.

Mono low-rates



Stereo MPEG USAC Verification Listening Tests
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𝐿𝑜𝑤 𝐵𝑖𝑡𝑟𝑎𝑡𝑒𝑠 𝐻𝑖𝑔ℎ 𝐵𝑖𝑡𝑟𝑎𝑡𝑒𝑠

𝑹𝒑 𝑹𝒔 𝑹𝒑 𝑹𝒔

ViSQOL v3 0.777 0.782 0.825 0.906

InSE-NET 0.806 0.788 0.847 0.895

Codecs included in the MUSHRA tests were: AMR-WB+, HE-AAC-v1, and USAC. 

*ViSQOL-v3 compares the mid-signal: 𝑀 =
1

2
(𝐿 + 𝑅)

**Signals fed to the model for comparison are the mid-signal.
.



Conclusions

• We demonstrate mimicking a state-of-the-art coded audio quality metric with a

deep neural network called InSE-NET followed by improving over it.

• Synthetic data augmentation can steer the model to predict accurately.

• Listening tests should further improve the accuracy of the prediction.
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THANK YOU
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APPENDIX
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Training Dynamics
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L O S S  F U N C T I O N

IN + SE (w/o Head) with L1-loss IN + SE (w/o Head) with Smooth L1-loss


