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PRIOR RESEARCH

Deep Learning-based Speech/Audio Quality Predictors

* Mainly deals with:
1. Non-intrusive quality measurements
2. Speech at lower (e.g., 16-kHz) sampling rate

3. Models are fed with either time-domain signals or spectral domain signals (e.g., spectrograms and

Mel-scale spectrograms).

« For acomprehensive list, see the references listed in [1].

* None of the work deals with predicting the quality of coded audio.

1J. Serra, et al., "SESQA: semi-supervised learning for speech quality assessment,” ICASSP 2021.



CONTRIBUTIONS

Our contributions

* Intrusive (or full-reference) coded audio quality predictor, designed to operate on:
1. General audio signal at 48-kHz sampling rate
2. Gammatone spectrograms (a perceptually-motivated spectrogram representation)

3. Completely utilize programmatically generated data.

* Mimicking the quality score predicted by a state-of-the-art objective quality metric (ViSQOL-

v3) with a deep neural network (DNN), followed by improving over it.



IDEA

ViSQOL-v3 to InSE-NET

Training set: (HE)-AAC as Deg.
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DATA

Training Data

 C(Clean (i.e., reference/un-encoded) data (12h)
« 4500 music excerpts (10h) from 10 different genres

* 900 speech excerpts (2h)

* Degraded data
« 16,20,24,32,40, 48 kbps (coded, i.e. encoded-decoded with HE-AAC)
« 80, 96, 128 kbps (coded with AAC)

« 3.5 and 7.0-kHz low-pass filtered versions of clean

« Label: ViISQOL -v3 MOS as ground truth



PRIOR MODEL

Inception Block’

Previous
layer
« Adapts to different receptive field size W‘
* Structure with four parallel branches:
1x1 con- 3x3 con- 5x5 con- 3x3 max
* 1x1conv volutions volutions volutions pooling
* nxn kernel
e mx m kernel
. Filter con-
* Max pooling catenation

« Concatenate the outputs of each kernel along the channel axis

*Szegedy, Christian, et al. “Rethinking the inception architecture for computer vision." CVPR. 2016.



MODIFIED MODEL

Horizontal and Vertical Kernels

Gammatone Spectrogram
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MODIFIED MODEL

Modified Inception Block for Audio

* Replace the square-shaped kernel with

vertical & horizontal rectangular-shaped

kernels (3x7, 7x3, 3x5, 5x3)

 Split the kernel into smaller ones to reduce

the number of parameters

« 3x7 kernel (21 param)into 3 x 1and 1 x 7 (10

param)

« Replace max pooling by average pooling

Previous
layer
3x1 con- 7x1 con- 1x1 con- Average
volutions volutions volutions pooling
1x7 con- 1x3 con-
volutions volutions

Filter con-
catenation



PRIOR MODEL

Squeeze & Excitation (SE) Layer

* A special attention mechanism along channel axis
* Squeeze: use 1 x 1 conv to squeeze information along time and frequency

* Excitation: use 2 following fully connected layers and a sigmoid to boost those channels of

more importance
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"Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." CVPR. 2018.



INSE-NET

INSE-NET Architecture

Two major changes:

Removed the head layer
Replace max pooling with average pooling

Reason:

Head layer in original Inception was designed

to extract features from images

In our case, Gammatone spectrogram can be
already viewed as a feature representation for

audio

Reference
.

A A

Degraded

[ Inception Block A

J

'

[ Inception Block A

]

SE Block

IF

[ Inception Block B

SE Block

I‘_

{ Inception Block C

SE Block

I&

[Adaptive Average Pooling]

.

[ Fully Connected Layers J

MOS-LQO

10



OBSERVATIONS

Unencoded audio
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Excerpt with very low energy content in high-frequency bands
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OBSERVATIONS

Coded at a very high bitrate

Predicted MOS is low even though there is no audible difference
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Reason: visible but inaudible spectral hole in high-frequency region
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ADDITIONAL SYNTHETIC DATA

Train with visibly different but perceptually equivalent pairs
(code at high bitrates and label MOS as 5)
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An example of a visibly different but perceptually equivalent pair
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RESULTS

Training with additional synthetic data

An example of (an easy to code) Korean speech excerpt.
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Mono MPEG USAC Verification Listening Tests

Mono low-rates

Pearson's correlation coefficient

Spearman’s Rank correlation coefficient
‘/A/ p

Rp R
PEAQ Advanced 0.650 0.700 For the Siefried02 excerpt:
ViSOQOL-v3 0.810 0.840 48.5% improvement in correlation
coefficients
INSE-NET (mono) 0.830 0.835

Codecs included in the MUSHRA tests were: AMR-WB+, HE-AAC-v1, and USAC.
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RESULTS PER CODEC

Mono MPEG USAC Verification Listening Tests

Mono low-rates

ViSQOL-v3 INSE-NET
Codecs R, R, R, R,
AMR-WB+ 0.877 0.862 0.889 0.856
HE-AAC 0.836 0.792 0.853 0.791
USAC 0.853 0.881 0.873 0.881

Codecs included in the MUSHRA tests were AMR-WB+, HE-AAC-v1, and USAC.
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RESULTS FOR STEREO

Stereo MPEG USAC Verification Listening Tests

Low Bitrates High Bitrates

R, R, R, R
ViSQOL v3 0.777 0.782 0.825 0.906
INSE-NET 0.806 0.788 0.847 0.895

Codecs included in the MUSHRA tests were: AMR-WB+, HE-AAC-v1, and USAC.
*ViSQOL-v3 compares the mid-signal: M = %(L + R)
**Signals fed to the model for comparison are the mid-signal.

17



CONCLUSIONS

Conclusions

« We demonstrate mimicking a state-of-the-art coded audio quality metric with a

deep neural network called INSE-NET followed by improving over it.
» Synthetic data augmentation can steer the model to predict accurately.

« Listening tests should further improve the accuracy of the prediction.
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LOSS FUNCTION

Training Dynamics
IN + SE (w/o Head) with L1-loss
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