Dolby



# InSE-NET: A Perceptually Coded Audio Quality Model based on CNN

GUANXIN JIANG, ARIJIT BISWAS, CHRISTIAN BERGLER, ANDREAS MAIER

151<sup>ST</sup>AES CONVENTION, OCTOBER 20-23, 2021

## Deep Learning-based Speech/Audio Quality Predictors

- Mainly deals with:
  - 1. Non-intrusive quality measurements
  - 2. Speech at lower (e.g., 16-kHz) sampling rate
  - 3. Models are fed with either time-domain signals or spectral domain signals (e.g., spectrograms and Mel-scale spectrograms).
- For a comprehensive list, see the references listed in [1].
- None of the work deals with predicting the quality of coded audio.

## **Our contributions**

- Intrusive (or full-reference) coded audio quality predictor, designed to operate on:
  - 1. General audio signal at 48-kHz sampling rate
  - 2. Gammatone spectrograms (a perceptually-motivated spectrogram representation)
  - 3. Completely utilize programmatically generated data.

• Mimicking the quality score predicted by a state-of-the-art objective quality metric (ViSQOLv3) with a deep neural network (DNN), followed by improving over it.

## ViSQOL-v3 to InSE-NET



## **Training Data**

DATA

- Clean (i.e., reference/un-encoded) data (12h)
  - 4500 music excerpts (10h) from 10 different genres
  - 900 speech excerpts (2h)
- Degraded data
  - 16, 20, 24, 32, 40, 48 kbps (coded, i.e. encoded-decoded with HE-AAC)
  - 80, 96, 128 kbps (coded with AAC)
  - 3.5 and 7.0-kHz low-pass filtered versions of clean
- Label: ViSQOL -v3 MOS as ground truth

## Inception Block\*



• Concatenate the outputs of each kernel along the channel axis

## Horizontal and Vertical Kernels

30 25 Vertical kernels \_ 20 Horizontal kernels 15 10 Bands 5 **Frames** 

Gammatone Spectrogram

## **Modified Inception Block for Audio**

- Replace the square-shaped kernel with vertical & horizontal rectangular-shaped kernels (3x7, 7x3, 3x5, 5x3)
- Split the kernel into smaller ones to reduce the number of parameters
  - 3 x 7 kernel (21 param) into 3 x 1 and 1 x 7 (10 param)
- Replace max pooling by average pooling



## Squeeze & Excitation (SE) Layer\*

- A special attention mechanism along channel axis
  - Squeeze: use 1 x 1 conv to squeeze information along time and frequency
  - Excitation: use 2 following fully connected layers and a sigmoid to boost those channels of more importance



\*Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." CVPR. 2018.

## InSE-NET Architecture

#### Two major changes:

- Removed the head layer
- Replace max pooling with average pooling
- Reason:
  - Head layer in original Inception was designed to extract features from images
  - In our case, Gammatone spectrogram can be already viewed as a feature representation for audio



### **Unencoded** audio



Excerpt with very low energy content in high-frequency bands

## Coded at a very high bitrate

Predicted MOS is low even though there is no audible difference



Reason: visible but inaudible spectral hole in high-frequency region

# Train with visibly different but perceptually equivalent pairs (code at high bitrates and label MOS as 5)



An example of a visibly different but perceptually equivalent pair

## Training with additional synthetic data



## Mono MPEG USAC Verification Listening Tests

Mono low-rates



Codecs included in the MUSHRA tests were: AMR-WB+, HE-AAC-v1, and USAC.

## Mono MPEG USAC Verification Listening Tests

Mono low-rates

|         | ViSQOL-v3      |                | InSE-NET       |                |
|---------|----------------|----------------|----------------|----------------|
| Codecs  | R <sub>p</sub> | R <sub>s</sub> | R <sub>p</sub> | R <sub>s</sub> |
| AMR-WB+ | 0.877          | 0.862          | 0.889          | 0.856          |
| HE-AAC  | 0.836          | 0.792          | 0.853          | 0.791          |
| USAC    | 0.853          | 0.881          | 0.873          | 0.881          |

Codecs included in the MUSHRA tests were AMR-WB+, HE-AAC-v1, and USAC.

.

## Stereo MPEG USAC Verification Listening Tests

|           | Low Bitrates          |       | High Bitrates |                |
|-----------|-----------------------|-------|---------------|----------------|
|           | <b>R</b> <sub>p</sub> | $R_s$ | $R_p$         | R <sub>s</sub> |
| ViSQOL v3 | 0.777                 | 0.782 | 0.825         | 0.906          |
| InSE-NET  | 0.806                 | 0.788 | 0.847         | 0.895          |

Codecs included in the MUSHRA tests were: AMR-WB+, HE-AAC-v1, and USAC.

\*ViSQOL-v3 compares the mid-signal:  $M = \frac{1}{2}(L + R)$ 

\*\*Signals fed to the model for comparison are the mid-signal.

## Conclusions

- We demonstrate mimicking a state-of-the-art coded audio quality metric with a deep neural network called InSE-NET followed by improving over it.
- Synthetic data augmentation can steer the model to predict accurately.
- Listening tests should further improve the accuracy of the prediction.

### THANK YOU

APPENDIX

## **Training Dynamics**

IN + SE (w/o Head) with L1-loss

 $L_1 = rac{1}{N}\sum_i^N \mid M - \hat{M}_i \mid$ 



IN + SE (w/o Head) with Smooth L1-loss  

$$L_1, smooth = \frac{1}{N} \sum_i z_i$$
where  $z_i = \begin{cases} \frac{1}{2} (M - \hat{M}_i)^2 & \text{if } | M - \hat{M}_i | < 1 \\ | M - \hat{M}_i | -\frac{1}{2} & \text{otherwise} \end{cases}$ 

