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First of all, we’d like to show our achievement.

Two contributions
1. Formulation of loss function including entropy of network parameters 
2. Construction of encoding method for network parameters

Image compression performance:
comparable to conventional neural network-based methods 

using overfitting method, while reducing network size
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We achieved the image compression performance comparable to conventional neural network-based 
methods using the overfitting method, while reducing the network size.

Two contributions
1. Formulation of loss function including entropy of network parameters 
2. Construction of encoding method for network parameters

Image compression performance:
comparable to conventional neural network-based methods 

using overfitting method, while reducing network size
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We formulated the loss function including the entropy of the network parameters,
and we constructed an encoding method for the network parameters.

Two contributions
1. Formulation of loss function including entropy of network parameters 
2. Construction of encoding method for network parameters

Image compression performance:
comparable to conventional neural network-based methods 

using overfitting method, while reducing network size
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Then, we’d like to introduce the background of our study.



Fujii
Laboratory

Image compression methods

September 19-22 2021 IEEE International Conference on Image Processing 7

Image compression is a fundamental task in image processing and is used in a variety of applications.

• Wavelet-based method
Ex) JPEG 2000 (1997~)

Past

Present

• DCT-based method
Ex) JPEG [1] (1992), BPG (2014)

• Neural network-based method
Ex) Autoencoder [2] (2006~)

[1] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron., vol. 38, no. 1 (1992) 
[2] G. E. Hinton et.al., “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507 (2006) 
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There are various image compression methods, typical of which are DCT-based and Wavelet-based 
methods.

• Wavelet-based method
Ex) JPEG 2000 (1997~)

Past

Present

• DCT-based method
Ex) JPEG [1] (1992), BPG (2014)

• Neural network-based method
Ex) Autoencoder [2] (2006~)

[1] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron., vol. 38, no. 1 (1992) 
[2] G. E. Hinton et.al., “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507 (2006) 
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Recently, neural network-based methods such as autoencoder have attracted a lot of attention. We 
focus on this method using an autoencoder.

• Wavelet-based method
Ex) JPEG 2000 (1997~)

Past

Present

• DCT-based method
Ex) JPEG [1] (1992), BPG (2014)

• Neural network-based method
Ex) Autoencoder [2] (2006~)

[1] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron., vol. 38, no. 1 (1992) 
[2] G. E. Hinton et.al., “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507 (2006) 
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We’d like to explain the autoencoder for the neural-network-based image compression method.

[3] F. Mentzer et.al., “Conditional probability models for deep image compression,”  CVPR, (2018) 
[4] J. Balle et.al., “End-to-end optimized image compression”, ICLR, (2017) 

Encoder
(𝑥 ; 𝜙)

Decoder
(𝑦 ; 𝜓)𝑦

Latent representation： 𝑦 Reconstructed image：𝑧Input image： 𝑥

Outline of autoencoder-based method

• Input image (𝑥): converted to reconstructed image (𝑧) through Encoder and Decoder

• Latent representation (𝑦):  compressed representation of input image (𝑥)
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The autoencoder is a network including two parts: an encoder and a decoder.

[3] F. Mentzer et.al., “Conditional probability models for deep image compression,”  CVPR, (2018) 
[4] J. Balle et.al., “End-to-end optimized image compression”, ICLR, (2017) 

Encoder
(𝑥 ; 𝜙)

Decoder
(𝑦 ; 𝜓)𝑦

Latent representation： 𝑦 Reconstructed image：𝑧Input image： 𝑥

Outline of autoencoder-based method

• Input image (𝑥): converted to reconstructed image (𝑧) through Encoder and Decoder

• Latent representation (𝑦):  compressed representation of input image (𝑥)
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At an encoder, the input image is first converted to a latent representation that has a small data size. 
Then it is transformed to the reconstructed image 𝑧 at a decoder.

[3] F. Mentzer et.al., “Conditional probability models for deep image compression,”  CVPR, (2018) 
[4] J. Balle et.al., “End-to-end optimized image compression”, ICLR, (2017) 

Encoder
(𝑥 ; 𝜙)

Decoder
(𝑦 ; 𝜓)𝑦

Latent representation： 𝑦 Reconstructed image：𝑧Input image： 𝑥

• Input image (𝑥): converted to reconstructed image (𝑧) through Encoder and Decoder

• Latent representation (𝑦):  compressed representation of input image (𝑥)

Outline of autoencoder-based method
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Next, we explain the training procedure for an autoencoder.
In the training, the autoencoder is trained using a large number of images.

[3] F. Mentzer et.al., “Conditional probability models for deep image compression,”  CVPR, (2018) 
[4] J. Balle et.al., “End-to-end optimized image compression”, ICLR, (2017) 

Encoder
(𝑥 ; 𝜙)

Decoder
(𝑦 ; 𝜓)𝑦

Latent representation： 𝑦 Reconstructed image：𝑧Input image： 𝑥

Training of autoencoder

Optimized for large number of images (Data sets : 𝜒)
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The parameters of the network are updated so that the error between the input image 𝑥 and the 
reconstructed image 𝑧 is reduced.

[3] F. Mentzer et.al., “Conditional probability models for deep image compression,”  CVPR, (2018) 
[4] J. Balle et.al., “End-to-end optimized image compression”, ICLR, (2017) 

Encoder
(𝑥 ; 𝜙)

Decoder
(𝑦 ; 𝜓)𝑦

Latent representation： 𝑦 Reconstructed image：𝑧Input image： 𝑥

min ||𝑥 − 𝑧||!!
→Reconstructed image 𝑧 ≈ Input image 𝑥

Training of autoencoder
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By doing so, the output 𝑧 of the network will be similar to the input image 𝑥.

[3] F. Mentzer et.al., “Conditional probability models for deep image compression,”  CVPR, (2018) 
[4] J. Balle et.al., “End-to-end optimized image compression”, ICLR, (2017) 

Encoder
(𝑥 ; 𝜙)

Decoder
(𝑦 ; 𝜓)𝑦

Latent representation： 𝑦 Reconstructed image：𝑧Input image： 𝑥

min ||𝑥 − 𝑧||!!
→Reconstructed image 𝑧 ≈ Input image 𝑥

Training of autoencoder
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A network trained on a large number of images can represent general image features. Thus, the 
network can be applied to test images that were not used for training. 

Testing of trained autoencoder

[3] F. Mentzer et.al., “Conditional probability models for deep image compression,”  CVPR, (2018) 
[4] J. Balle et.al., “End-to-end optimized image compression”, ICLR, (2017) 

Optimized for common implicit features in training images
→Applicable to unseen images

Encoder
(𝑥 ; 𝜙)

Decoder
(𝑦 ; 𝜓)𝑦

Latent representation： 𝑦 Reconstructed image：𝑧Input image： 𝑥
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When we attempt to transmit an image efficiently, we transmit the latent representation, and the 
receiver can reproduce a target image from the latent representation through the decoder.

Decoder
(𝑦 ; 𝜓)𝑦

Latent representation： 𝑦

Testing of trained autoencoder
Reconstructed image：𝑧

[3] F. Mentzer et.al., “Conditional probability models for deep image compression,”  CVPR, (2018) 
[4] J. Balle et.al., “End-to-end optimized image compression”, ICLR, (2017) 

Latent representation
(compressed representation) Target image
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Therefore, the transmitted information is only a latent representation.
This is the outline of the autoencoder-based image compression method.

Decoder
(𝑦 ; 𝜓)𝑦

Latent representation： 𝑦

Testing of trained autoencoder
Reconstructed image：𝑧

Transmitted information: Latent representation only

[3] F. Mentzer et.al., “Conditional probability models for deep image compression,”  CVPR, (2018) 
[4] J. Balle et.al., “End-to-end optimized image compression”, ICLR, (2017) 
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Here we’d like to indicate three drawbacks of the autoencoder-based method. 

• Large number of images for training
• Large computational cost for training 
• Large network architectures unsuitable

for limited computational resources (e.g. memory) 
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• Large number of images for training
• Large computational cost for training 
• Large network architectures unsuitable

for limited computational resources (e.g. memory) 

Autoencoder-based method
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First, as discussed thus far, conventional methods using the autoencoder require a large number of 
images for training, whose collection is a very laborsome task.
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• Large number of images for training
• Large computational cost for training 
• Large network architectures unsuitable

for limited computational resources (e.g. memory) 

Autoencoder-based method
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Second, when a network size is large, the training process becomes complex.
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• Large number of images for training
• Large computational cost for training 
• Large network architectures unsuitable

for limited computational resources (e.g. memory) 

Autoencoder-based method
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Third, when we use digital devices with poor computational resources such as smartphones, a model 
with a large network size is not suitable.
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Therefore, we attempt to build a model with a smaller network size.
Specifically, we reduce the numbers of layers and channels.

• Large number of images for training
• Large computational cost for training 
• Large network architectures unsuitable

for limited computational resources (e.g. memory) 

Smaller network size
i.e. reduction of numbers of layers and channels

while keeping compression performance
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In this section, we explain the proposed method that can overcome abovementioned drawbacks.
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First, the proposed method does not use a large number of images as in the conventional methods. It 
uses only a single image to be compressed as the training data.

𝑦

Input image： 𝑥 Reconstructed image：𝑧Latent representation： 𝑦

Single target imageLarge number of images
(Data sets : 𝜒)

Decoder
(𝑦 ; 𝜓)

Encoder
(𝑥 ; 𝜙)
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Because it is trained on a single target image, this model is overfitted.

𝑦

Input image： 𝑥 Reconstructed image：𝑧Latent representation： 𝑦

Overfitted

High performance
(smaller reconstruction error, higher compression performance)

Decoder
(𝑦 ; 𝜓)

Encoder
(𝑥 ; 𝜙)
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Therefore, the network is optimized only for the image, which produces small reconstruction error and 
improves the compression performance.

𝑦

Input image： 𝑥 Reconstructed image：𝑧Latent representation： 𝑦

Decoder
(𝑦 ; 𝜓)

Encoder
(𝑥 ; 𝜙)

Overfitted

High performance
(smaller reconstruction error, higher compression performance)
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Thanks to the overfitting, we can reduce the number of layers and channels while keeping the 
moderate performance.

Input image： 𝑥 Reconstructed image：𝑧

Decoder
(𝑦 ; 𝜓)

𝑦

Latent representation： 𝑦

Encoder
(𝑥 ; 𝜙)

Smaller network with
fewer layers, fewer channels
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In addition to the latent representation, the decoder weights have to be transmitted in the proposed 
method. An actual encoding method will be elaborated later on.

Input image： 𝑥 Reconstructed image：𝑧

Decoder
(𝑦 ; 𝜓)

𝑦

Latent representation： 𝑦

Encoder
(𝑥 ; 𝜙)

Transmitted information:   
latent representation + decoder weights
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Next, we introduce the loss function in the proposed method. 

Latent Loss

Conventional Method [4]

L(Φ,Ψ) = *
)∈+

𝐷(𝑥, 𝑧) + 𝜆,!R 𝑦-

Weight Loss

Proposed method

L(Φ,Ψ) = 𝐷(𝑥, 𝑧) + 𝜆,!𝑅 𝑦- + 𝜆.!R(𝜓-)

L(𝜙, 𝜓) =

L(𝜙, 𝜓) =

𝝌 : Training dataset
D() : Distortion function
R() : Rate function
𝑦! = 𝑄(𝑦) : Quantized 𝑦
𝜆"! : Lagrangian multiplier

𝜓! = 𝑄(𝜓) : Quantized 𝜓
𝜆#! : Lagrangian multiplier(2)

(1)
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We extend the loss function in [4], where D represents a distortion function w.r.t. original and 
reconstructed images, and R is a rate function w.r.t. a latent representation. 

Conventional Method [4]

L(Φ,Ψ) = *
)∈+

𝐷(𝑥, 𝑧) + 𝜆,!R 𝑦-

Proposed method

L(Φ,Ψ) = 𝐷(𝑥, 𝑧) + 𝜆,!𝑅 𝑦- + 𝜆.!R(𝜓-)

L(𝜙, 𝜓) =

L(𝜙, 𝜓) =

𝝌 : Training dataset
D() : Distortion function
R() : Rate function
𝑦! = 𝑄(𝑦) : Quantized 𝑦
𝜆"! : Lagrangian multiplier

𝜓! = 𝑄(𝜓) : Quantized 𝜓
𝜆#! : Lagrangian multiplier(2)

(1)

Latent Loss

Weight Loss
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𝑦! represents a quantized version of a latent representation 𝑦, and  𝜆"! is a Lagrangian multiplier that 
controls the balance between the rate and distortion.

Conventional Method [4]

L(Φ,Ψ) = *
)∈+

𝐷(𝑥, 𝑧) + 𝜆,!R 𝑦-

Proposed method

L(Φ,Ψ) = 𝐷(𝑥, 𝑧) + 𝜆,!𝑅 𝑦- + 𝜆.!R(𝜓-)

L(𝜙, 𝜓) =

L(𝜙, 𝜓) =

𝝌 : Training dataset
D() : Distortion function
R() : Rate function
𝑦! = 𝑄(𝑦) : Quantized 𝑦
𝜆"! : Lagrangian multiplier

𝜓! = 𝑄(𝜓) : Quantized 𝜓
𝜆#! : Lagrangian multiplier(2)

(1)

Latent Loss

Weight Loss
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In the proposed method, because we have to consider rate of decoder weights, we append a new 
rate term w.r.t. the weights to Eq. (1). 

Conventional Method [4]

L(Φ,Ψ) = *
)∈+

𝐷(𝑥, 𝑧) + 𝜆,!R 𝑦-

Proposed method

L(Φ,Ψ) = 𝐷(𝑥, 𝑧) + 𝜆,!𝑅 𝑦- + 𝜆.!R(𝜓-)

L(𝜙, 𝜓) =

L(𝜙, 𝜓) =

𝝌 : Training dataset
D() : Distortion function
R() : Rate function
𝑦! = 𝑄(𝑦) : Quantized 𝑦
𝜆"! : Lagrangian multiplier

𝜓! = 𝑄(𝜓) : Quantized 𝜓
𝜆#! : Lagrangian multiplier(2)

(1)

Latent Loss

Weight Loss



Fujii
Laboratory

Loss function

September 19-22 2021 IEEE International Conference on Image Processing 34

Here, 𝜓! indicates a quantized version of original weights 𝜓. Eq. (2) is the proposed loss function.

Conventional Method [4]

L(Φ,Ψ) = *
)∈+

𝐷(𝑥, 𝑧) + 𝜆,!R 𝑦-

Proposed method

L(Φ,Ψ) = 𝐷(𝑥, 𝑧) + 𝜆,!𝑅 𝑦- + 𝜆.!R(𝜓-)

L(𝜙, 𝜓) =

L(𝜙, 𝜓) =

𝝌 : Training dataset
D() : Distortion function
R() : Rate function
𝑦! = 𝑄(𝑦) : Quantized 𝑦
𝜆"! : Lagrangian multiplier

𝜓! = 𝑄(𝜓) : Quantized 𝜓
𝜆#! : Lagrangian multiplier(2)

(1)

Latent Loss

Weight Loss
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Because decoder weights are represented by real numbers, we have to quantize them to reduce their 
data amount. To this end, we here give a brief overview of the convolution in the autoencoder.

Convolution for a spatial position (𝑢, 𝑣)

𝐼- 𝑢, 𝑣, 𝑐ℎ′ =1
./

1
0

1
1

𝐼 𝑢 + 𝑖, 𝑣 + 𝑗, 𝑐ℎ 5 𝑘(𝑖, 𝑗, 𝑐ℎ, 𝑐ℎ′)

𝑐ℎ/𝑐ℎ′ : input/output channel of the layer
𝑘 : convolutional filter

(3)



Fujii
Laboratory

Convolution process

September 19-22 2021 IEEE International Conference on Image Processing 36

If we consider a two-dimensional convolution, the operation is generally formulated by Eq. (3).

𝐼- 𝑢, 𝑣, 𝑐ℎ′ =1
./

1
0

1
1

𝐼 𝑢 + 𝑖, 𝑣 + 𝑗, 𝑐ℎ 5 𝑘(𝑖, 𝑗, 𝑐ℎ, 𝑐ℎ′)

𝑐ℎ/𝑐ℎ′ : input/output channel of the layer
𝑘 : convolutional filter

(3)

Convolution for a spatial position (𝑢, 𝑣)
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Because the convolution is computed for each output channel, we quantize weights for each output 
channel as well. 

𝐼- 𝑢, 𝑣, 𝑐ℎ′ =1
./

1
0

1
1

𝐼 𝑢 + 𝑖, 𝑣 + 𝑗, 𝑐ℎ 5 𝑘(𝑖, 𝑗, 𝑐ℎ, 𝑐ℎ′)

𝑐ℎ/𝑐ℎ′ : input/output channel of the layer
𝑘 : convolutional filter

(3)

Decoder weights: quantized for each output channel 𝑐ℎ′

Convolution: computed for each output channel 𝑐ℎ′

Convolution for a spatial position (𝑢, 𝑣)
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In other words, the filter is adaptively quantized for each output channel.

𝐼- 𝑢, 𝑣, 𝑐ℎ′ =1
./

1
0

1
1

𝐼 𝑢 + 𝑖, 𝑣 + 𝑗, 𝑐ℎ 5 𝑘(𝑖, 𝑗, 𝑐ℎ, 𝑐ℎ′)

𝑐ℎ/𝑐ℎ′ : input/output channel of the layer
𝑘 : convolutional filter

(3)

Convolution for a spatial position (𝑢, 𝑣)

Decoder weights: quantized for each output channel 𝑐ℎ′

Convolution: computed for each output channel 𝑐ℎ′
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For notational convenience, decoder weights and biases are commonly represented by W, but the 
following quantization is applied to weights and biases individually.

𝑊- = round
𝑊
𝑞

𝑞

𝑁 = round( log! 𝐶 C D𝑤 )

𝑞 = 24

Quantization Process : 𝑊- = Q(𝑊)

(4)

𝑊/ 𝑊- : Weight before (/after) applying quantization
𝑞 : Quantization step
9𝑤 : Absolute average of weights
𝐶 : Control parameter (const)

(5)

(6)
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Our quantization is a simple scalar quantization as defined in Eq. (4), where 𝑞 is the quantization step 
size. 

𝑊- = round
𝑊
𝑞

𝑞

𝑁 = round( log! 𝐶 C D𝑤 )

𝑞 = 24

Quantization Process : 𝑊- = Q(𝑊)

(4)

𝑊/ 𝑊- : Weight before (/after) applying quantization
𝑞 : Quantization step
9𝑤 : Absolute average of weights
𝐶 : Control parameter (const)

(5)

(6)
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The key point of our quantization process is that it is adaptively determined from weights for each 
output channel. 

𝑊- = round
𝑊
𝑞

𝑞

𝑁 = round( log! 𝐶 C D𝑤 )

𝑞 = 24

Quantization Process : 𝑊- = Q(𝑊)

(4)

𝑊/ 𝑊- : Weight before (/after) applying quantization
𝑞 : Quantization step
9𝑤 : Absolute average of weights
𝐶 : Control parameter (const)

(5)

(6)
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The quantization step 𝑞 is parameterized by 𝑁, where 𝐶 is constant and 5𝑤 is the means of absolute 
values of weights. 

𝑊- = round
𝑊
𝑞

𝑞

𝑁 = round( log! 𝐶 C D𝑤 )

𝑞 = 24

Quantization Process : 𝑊- = Q(𝑊)

(4)

𝑊/ 𝑊- : Weight before (/after) applying quantization
𝑞 : Quantization step
9𝑤 : Absolute average of weights
𝐶 : Control parameter (const)

(5)

(6)

Controlling the ratio of '0' and '1’ 
in binary representation
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By using our quantization, the probability of ‘0’ and ‘1’ will be biased for each channel, so that they 
can be efficiently encoded by a suitable entropy coding technique.

𝑊- = round
𝑊
𝑞

𝑞

𝑁 = round( log! 𝐶 C D𝑤 )

𝑞 = 24

Quantization Process : 𝑊- = Q(𝑊)

(4)

𝑊/ 𝑊- : Weight before (/after) applying quantization
𝑞 : Quantization step
9𝑤 : Absolute average of weights
𝐶 : Control parameter (const)

(5)

(6)

Controlling the ratio of '0' and '1’ 
in binary representation



Fujii
Laboratory

Model Summary

September 19-22 2021 IEEE International Conference on Image Processing 44

We present a summary of the conventional and proposed methods. 

Conventional Method [4] Proposed Method

Embed image information into… Latent representations Latent representations and network parameters

Training data Large number of images A single target image

Trained model has… Generalization performance Target image specific

Information for decoding Latent representations Latent representations and decoder weights

Loss function L(𝜙, 𝜓) 𝐷(𝑥, 𝑧) + 𝜆"!𝑅 𝑦! + 𝜆#!R(𝜓!)=
$∈&

𝐷(𝑥, 𝑧) + 𝜆!!R 𝑦!
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The proposed method is trained on a single target image for which the network is optimized.  
This results in target image specific weights.

Conventional Method [4] Proposed Method

Embed image information into… Latent representations Latent representations and network parameters

Training data Large number of images A single target image

Trained model has… Generalization performance Target image specific

Information for decoding Latent representations Latent representations and decoder weights

Loss function L(𝜙, 𝜓) 𝐷(𝑥, 𝑧) + 𝜆"!𝑅 𝑦! + 𝜆#!R(𝜓!)=
$∈&

𝐷(𝑥, 𝑧) + 𝜆!!R 𝑦!
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Because we have to transmit decoder weights to reconstruct an image, we appended a rate term w.r.t.
weights to the loss function in [4].  

Conventional Method [4] Proposed Method

Embed image information into… Latent representations Latent representations and network parameters

Training data Large number of images A single target image

Trained model has… Generalization performance Target image specific

Information for decoding Latent representations Latent representations and decoder weights

Loss function L(𝜙, 𝜓) 𝐷(𝑥, 𝑧) + 𝜆"!𝑅 𝑦! + 𝜆#!R(𝜓!)=
$∈&

𝐷(𝑥, 𝑧) + 𝜆!!R 𝑦!
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We evaluated our method through experiments.
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We conducted an experiment to verify the effectiveness of our method. 

(a) (b)

• Image compression through autoencoder
• Test Data : 8K images (a) and (b)
• Metric (Distortion) : Peak signal-to-noise ratio (PSNR)
• Metric (Rate) : Bits per pixel (bpp)
• Baseline : Ref. [4]

• Comparison with
• Ref. [4]
• JPEG
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We used two 8K images (a) and (b) as test data. We employed PSNR and bpp as distortion and rate 
metrics, respectively.

(a) (b)

• Image compression through autoencoder
• Test Data : 8K images (a) and (b)
• Metric (Distortion) : Peak signal-to-noise ratio (PSNR)
• Metric (Rate) : Bits per pixel (bpp)
• Baseline : Ref. [4]

• Comparison with
• Ref. [4]
• JPEG
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We implemented our method on an autoencoder-based method [4]. To verify the effectiveness of our 
method, it was compared with JPEG and the original technique [4].

(a) (b)

• Image compression through autoencoder
• Test Data : 8K images (a) and (b)
• Metric (Distortion) : Peak signal-to-noise ratio (PSNR)
• Metric (Rate) : Bits per pixel (bpp)
• Baseline : Ref. [4]

• Comparison with
• Ref. [4]
• JPEG
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In Ref. [4], both the encoder and decoder include three convolutional layers, and each tensor has 128 
channels.

deconv deconv deconvconvconvconv

𝐻×𝑊×3ch

𝐻
4
×
𝑊
4
×128

𝐻
8
×
𝑊
8
×128

𝐻
8
×
𝑊
8
×128

𝐻
4
×
𝑊
4
×128

𝐻×𝑊×3

𝐻
16
×
𝑊
16
×128

Encoder 𝑧𝑥 𝑦 Decoder

• Encoder : 3 convolutional layers
• Decoder : 3 convolutional layers
• Latent representation : 128 channels
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This table summarizes the network architecture of Ref. [4].

Layer Kernel size Stride size Channel
(in/out)

Accumulated 
Strides (in/out) Input

Conv-1+GDN-1 9 4 3/128 1/4 Input Image
Conv-2+GDN-2 5 2 128/128 4/8 Conv-1+GDN-1

Conv-3 5 2 128/128 8/16 Conv-2+GDN-2
Deconv-1+IGDN-1 5 2 128/128 16/8 Conv-3
Deconv-2+IGDN-2 5 2 128/128 8/4 Deconv-1+IGDN-1

Deconv-3 9 4 128/3 4/1 Deconv-2+IGDN-2

• Network architecture in Ref. [4]
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Meanwhile, our method was implemented by using a smaller network than Ref. [4].

Layer Kernel size Stride size Channel
(in/out)

Accumulated 
Strides (in/out) Input

Conv-1+GDN-1 33 16 3/72 1/16 Input Image
Deconv-1+IGDN-1 33 16 72/3 16/1 Conv-1+GDN-1

Encoder 𝑧𝑥 𝑦 Decoder

deconvconv

𝐻×𝑊×3ch 𝐻×𝑊×3

𝐻
16
×
𝑊
16
×72
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Specifically, we used one convolutional layer and 72 channels for the latent representation.

Layer Kernel size Stride size Channel
(in/out)

Accumulated 
Strides (in/out) Input

Conv-1+GDN-1 33 16 3/72 1/16 Input Image
Deconv-1+IGDN-1 33 16 72/3 16/1 Conv-1+GDN-1

Encoder 𝑧𝑥 𝑦 Decoder

deconvconv

𝐻×𝑊×3ch 𝐻×𝑊×3

𝐻
16
×
𝑊
16
×72
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In the proposed method, the training epochs were set to 130,000 and 70,000 for (a) and (b), 
respectively. The quantization parameter 𝐶 was set to 0.01.

• Our Training Details
• Epoch : 130,000 (a), 70,000 (b)
• Batch size : 1
• Optimizer : Adam (learning rate=1e-4)
• Quantization parameter 𝐶 : 0.01

(a) (b)
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We used three different sets of parameters 𝜆 in the loss function, which can be categorized whether 
𝜆"! is larger than 𝜆#!.

• Different Lambda Parameters Sets （𝜆,! , 𝜆.!）

Parameter Sets （𝜆!' , 𝜆"'）

𝑃#('$ #)' (100, 10),   (250, 25),   (500, 50),   (750, 75),   (1000, 100)

𝑃#('% #)' (100, 100), (250, 250), (500, 500), (750, 750), (1000, 1000)

𝑃#('& #)' (10, 100),   (25, 250),   (50, 500),   (75, 750),   (100, 1000)

L(Φ,Ψ) = 𝐷(𝑥, 𝑧) + 𝜆!!𝑅 𝑦" + 𝜆#!R(𝜓")L(𝜙, 𝜓) =
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This graph shows rate-distortion curves of our method and two other methods.
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The vertical axis represents the PSNR, where a higher value indicates better reconstruction quality.
The horizontal axis represents the bit rate, where a smaller value indicates better compression.
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We can confirm that our method with 𝑃*"!+ *#! achieved comparable performance to JPEG and Ref. 
[4].

29

31

33

35

37

0 0.2 0.4 0.6 0.8 1

PS
N

R
 [d

B
]

bit rate [bit/px]

Ours ( lat>weight )

Ours ( lat=weight )

Ours ( lat<weight )

Ref. [4]

JPEG

𝑃"!"#"#"

𝑃"!"$"#"

𝑃"!"%"#"

Ours ( 𝑃,('- ,)' ))
Performance equivalent to 

JPEG and Ref. [4]



Fujii
Laboratory

Rate-Distortion Curve

September 19-22 2021 IEEE International Conference on Image Processing 60

Our method with 𝑃*"!, *#! outperformed Ref. [4] and JPEG, even though our network was smaller 
than Ref. [4]. 
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This is the result of the other test image.
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The proposed method achieved the better performance than JPEG and Ref. [4].
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We also evaluate qualitative image quality. These are the images reconstructed from JPEG, Ref. [4], 
and our method. 

Ground Truth JPEG

Balle et al. [4] Ours

31.03 / 0.482PSNR [dB] / bpp

32.98 / 0.518 33.79 / 0.477
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These are enlarged views of the reconstructed images. Our method can preserve finer textures with a 
smaller bpp than the other methods.

Ground Truth JPEG

Balle et al. [4]

31.03 / 0.482PSNR [dB] / bpp

32.98 / 0.518
Ours

33.79 / 0.477
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We then investigate why the fine image features could be represented efficiently in our method, by 
visualizing convolutional filters in our networks. 
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These images are the decoder’s convolutional filters of Ref. [4] and our method.

Ref. [4] (Generalization) Ours (Overfitting)

Filter size : 5x5 Filter size : 33x33
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For Ref. [4], we visualize the filter deconvolving the latent representation with the largest variance 
over channels.

Ref. [4] (Generalization) Ours (Overfitting)

Filter size : 5x5 Filter size : 33x33
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For ours, we extract the filter with the largest variance over channels as well.

Ref. [4] (Generalization) Ours (Overfitting)

Filter size : 5x5 Filter size : 33x33
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From the visualization results, it can be seen that the shape of our filter is narrower than that of Ref. 
[4].

Ref. [4] (Generalization) Ours (Overfitting)

Filter size : 5x5 Filter size : 33x33
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This indicates that our filter preserves the high-frequency components of the image, which 
correspond to textures.

Ref. [4] (Generalization) Ours (Overfitting)

Filter size : 5x5 Filter size : 33x33
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These graphs show the frequency responses of the convolution filters.

Ref. [4] (Generalization) Ours (Overfitting)
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From the high-frequency regions (circled by red), we can see that our filter pass more high-frequency 
components than Ref. [4].

Ref. [4] (Generalization) Ours (Overfitting)
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This is the conclusion of this video. We proposed a overfitting method with a smaller network than 
conventional methods.

• Image compression method using overfitting strategy and 
smaller network

• From experimental results…
1. ”𝜆?* ≥ 𝜆@*” was optimal
2. Convolutional filter passing more high-frequency components
3. Better coding performance than generalized methods
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From the experiments, we found that 𝜆"! ≥ 𝜆#! was suitable for our method.

• Image compression method using overfitting strategy and 
smaller network

• From experimental results…
1. ”𝜆?* ≥ 𝜆@*” was optimal
2. Convolutional filter passing more high-frequency components
3. Better coding performance than generalized methods



Fujii
Laboratory

Conclusion

September 19-22 2021 IEEE International Conference on Image Processing 75

From the visualization of the convolutional filter, we confirmed that our filter can pass the high-
frequency components of images.

• Image compression method using overfitting strategy and 
smaller network

• From experimental results…
1. ”𝜆?* ≥ 𝜆@*” was optimal
2. Convolutional filter passing more high-frequency components
3. Better coding performance than generalized methods
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These results show higher compression performance of our method than generalized method.

• Image compression method using overfitting strategy and 
smaller network

• From experimental results…
1. ”𝜆?* ≥ 𝜆@*” was optimal
2. Convolutional filter passing more high-frequency components
3. Better coding performance than generalized methods
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That’s all for our presentation. Thank you for watching this video.

• Image compression method using overfitting strategy and 
smaller network

• From experimental results…
1. ”𝜆?* ≥ 𝜆@*” was optimal
2. Convolutional filter passing more high-frequency components
3. Better coding performance than generalized methods


