

Learning Robust Features for 3D Object Pose Estimation

Christos Papaioannidis and Ioannis Pitas Department of Informatics, Aristotle University of Thessaloniki

IEEE International Conference on Autonomous Systems (ICAS) 2021

Motivation: Autonomous robots or systems

- Estimate 3D pose of objects of interest in the surrounding environment.
- Use this information to decide on the next action according to a given objective.
 - e.g., grab and pass a tool to a human worker.
- Fast embedded execution.

3D object pose estimation problem

• Estimate the rotation between the object coordinate system and the reference coordinate system (e.g., camera of a UAV).

Rotation

Z

- 3D rotation matrix.
- Unit quaternion.
- Euler angles.
- Sub-case of 6D object pose estimation.
- Challenges:
 - 3D pose representation.
 - Non-trivial object symmetries.

3D object pose estimation

- 3D object pose regression: directly regress 3D poses.
- 3D object pose classification: classify an object image in a predefined number of orientation classes.
- **3D object pose retrieval**: match extracted 3D pose-related image features with a set of orientation class templates.

3D object pose retrieval

- Advantages over 3D pose regression and classification methods:
 - Only one trained CNN is required.
 - Object classes and 3D poses are predicted simultaneously.
 - A lightweight CNN can be used, enabling real-time execution or execution in embedded systems with limited computational capabilities.
- Disadvantages:
 - Accuracy is limited by the number of the selected orientation class templates.

Proposed method

- A CNN *f* is trained to extract 3D pose-related features.
- Using the trained CNN, codebook features \mathbf{f}_{c_i} , i = 1, ..., K are first calculated offline and stored: $\mathbf{f}_{c_i} = f(\mathbf{X}_{c_i})$.
- Given a test object image X, the corresponding feature vector is extracted using the same trained CNN: f = f(X).
- The extracted test image feature vector **f** is matched to the most similar \mathbf{f}_{c_i} , i = 1, ..., K using a Nearest Neighbor algorithm.

Proposed method

• 3D rotations are represented by unit quaternions:

$$\mathbf{q} = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$$

where q_0, q_1, q_2, q_3 are real numbers and $q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$.

- Advantages:
 - More compact 3D pose representation compared to the rotation matrix.
 - Numerically stable.
 - Avoid the gimbal lock problem.

Dataset construction

- The CNN is trained using a carefully designed training dataset.
- Training samples s = {X, c, q}, X: RGB-D object image, c: object class label, q: 3D pose quaternion.
- Two separate training sets are constructed: a set *P* containing sample pairs and a set *T* containing sample triplets.

Dataset construction

- Each entry of the pair set *P* consists of training samples *s_i*, *s_j* that belong in the same object class and under arbitrary poses.
- Triplet set T entries contain three training samples, s_i, s_j, s_k :
 - s_i, s_j are samples belonging to the same object class,
 - while s_k is a sample coming from any different class.

Network architecture

Loss functions

• Objective loss function:

$$L = \lambda_p L_{pose} + \lambda_o L_{obj} + \lambda_r L_{qreg}.$$

• Pairwise loss using entries of *P*:

$$L_{pose} = \sum_{s_i, s_j} \varphi(\mathbf{q}_i, \mathbf{q}_j) \cdot \{ \|\mathbf{f}_i - \mathbf{f}_j\|_2^2 - 2\arccos(|\mathbf{q}_i^T \mathbf{q}_j|) \}^2.$$

Symmetry-aware term based on depth images:

 $\varphi(\mathbf{q}_i,\mathbf{q}_j) = \left\| \mathbf{d}_{\mathbf{q}_i} - \mathbf{d}_{\mathbf{q}_j} \right\|_2^2.$

Training

• Triplet loss using entries of *T*:

$$L_{obj} = \sum_{s_i, s_j, s_k} \frac{\left\| \mathbf{f}_i - \mathbf{f}_j \right\|_2}{\|\mathbf{f}_i - \mathbf{f}_k\|_2 + \varepsilon}.$$

Quaternion regression loss:

 $L_{qreg} = 2 \operatorname{arccos}(|\mathbf{q}^T \widehat{\mathbf{q}}|).$

Quantitative evaluation

• Evaluation of the proposed method using the angular error in degrees given by:

 $E(\mathbf{q}, \widehat{\mathbf{q}}) = 2 \arccos(|\mathbf{q}^T \widehat{\mathbf{q}}|).$

• 3D pose estimation accuracy at threshold *t*: percentage of test samples for which the angular error is below a threshold angle

t.

Quantitative evaluation

• 3D object pose estimation accuracy on the LineMod [1] dataset.

	Angular threshold t								
									Object
	5°	10 °	15°	20 °	30 °	40 °	45 °	$Mean~(Median)\pm Std$	classification
3DPOD[2]	40.15%	72.72%	86.02%	91.76%	95.42%	96.90%	97.34%	$12.75^{\circ}(7.06^{\circ}) \pm 24.61^{\circ}$	98.94%
<i>PEDM</i> [3]	-	60.00%	-	93.20%	-	98.00%	-	-	99.30%
PGFL[4]	41.28%	83.07%	93.98%	97.43%	99.11%	99.52%	99.60%	$6.89^{\circ}(5.79^{\circ}) \pm 6.29^{\circ}$	99.64%
QL [5]	41.37%	82.02%	95.32%	98.49%	99.72%	99.92%	99.94%	$6.64^{\circ}(5.78^{\circ}) \pm 5.14^{\circ}$	99.50%
ours	44.13%	84.25%	95.76 %	98.77 %	99.84 %	99.93 %	99.94 %	$6.31^{\circ}(5.53^{\circ})\pm4.58^{\circ}$	99.68 %

[1] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab, "Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes," ACCV, 2012.

[2] P. Wohlhart and V. Lepetit, "Learning descriptors for object recognition and 3D pose estimation," CVPR, 2015.

[3] S. Zakharov, W. Kehl, B. Planche, A. Hutter, and S. Ilic, "3D object instance recognition and pose estimation using triplet loss with dynamic margin," IROS, 2017.

[4] V. Balntas, A. Doumanoglou, C. Sahin, J. Sock, R. Kouskouridas, and T.-K. Kim, "Pose guided rgbd feature learning for 3D object pose estimation," ICCV, 2017.

[5] C. Papaioannidis and I. Pitas, "3D object pose estimation using multi-objective quaternion learning," TCSVT, 2019.

Artificial Intelligence & Information Analysis Lab

Qualitative evaluation

Evaluation on LineMod objects.

Evaluation on a previously unseen object.

Thank you for your attention!

Contact: cpapaionn@csd.auth.gr

