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ABSTRACT
When training an anchor-based object detector with a sparsely
annotated dataset, the effort required to locate positive ex-
amples can cause performance degradation. Because anchor-
based object detection models collect positive examples under
IoU between anchors and ground-truth bounding boxes, in a
sparsely annotated image, some objects that are not annotated
can be assigned as negative examples, such as backgrounds.
We attempt to solve this problem with two approaches: 1) us-
ing an anchor-less object detector and 2) using a single-object
tracker for semi-supervised learning-based object detection.
The proposed technique performs bidirectional single-object
tracking from sparsely annotated bounding boxes as starting
points in videos to obtain dense annotations. On applying our
method to the EPIC-KITCHENS-55 dataset, we were able to
achieve runner-up performance in the Unseen section, while
achieving the first place in the Seen section of the EPIC-
KITCHENS 2020 object detection challenge under IoU> 0.5
on the EPIC-KITCHENS 2020 object detection challenge.

Index Terms— Object detection, semi-supervised learn-
ing, object tracking, ensemble learning, sparse annotation

1. INTRODUCTION

Owing to the rapid evolution of convolutional neural net-
works (CNNs), the performance of object recognition net-
works, including object detection, has significantly improved
[1]. The object detection dataset has also been changed from a
low-complexity dataset, such as PASCAL VOC [2], to a high-
complexity dataset such as MS-COCO [3]. Among the object
detection datasets, the relatively latest EPIC-KITCHENS-55
dataset is the largest egocentric video benchmark, offering a
unique viewpoint on people’s interaction with objects in mul-
tiple action clips. It has the following characteristics that are
different from other object detection datasets [4].

• Training annotations for object detection only capture
the active objects interacting with people in action
clips, which cause sparse annotations.

• The difference in the number of annotations between
the few and many shot classes is large, depending on
the distribution of the appearances of the objects in the
training dataset.

Fig. 1. Example of anchor-based detector training on a
sparsely annotated dataset. The solid green line boxes rep-
resent given ground-truth annotations, and the red dotted line
boxes are examples of positive examples based on anchors
with IoU and a ground-truth box. Light blue dashed line
boxes indicate objects to learn but not annotated in all train-
ing images. On the top image, a pot could be assigned as a
negative example and also a fan on the bottom image. These
missing annotations can degrade the performance of anchor-
based detector.

As described above, the annotation of EPIC-KICTHENS-
55 dataset for object detection is provided in a different way
from the existing datasets, and consequently, it is difficult
to apply the method of training the existing object detection
model as it is. In general, in the case of detectors that train
positive examples based on anchors [5, 6] or detectors that
train the objectness of a candidate object with the structure of
an RPN [7, 8], batch sampling is performed considering the
IoU with the ground-truth bounding box for effective training.
However, if anchor-based hard example mining is performed
on a sparsely annotated training image, the efficiency of train-
ing is hindered by the distribution of objects near the ground
truth bounding box. Figure 1 shows the negative effects of
collecting positive examples when training anchor-based ob-
ject detectors with sparse annotations.

We trained the object detector using two approaches to
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Fig. 2. The final goal of the proposed supervised learn-
ing. f denotes an action clip composed of N frames, and o
denotes a total ofM objects present in the action clip. We per-
formed semi-supervised learning through bidirectional track-
ing to obtain dense labels for all learnable objects present in
the action clip.

solve this problem. First, we used an anchor-less object de-
tector, the Fully Convolutional One-Stage Object Detection
(FCOS) network [9] and consequently improved the perfor-
mance considerably more than using anchor-based object de-
tector. Second, as the EPIC-KITCHENS-55 dataset origi-
nated from videos, we used single-object tracking to semi-
supervise all detectable objects between consecutive frames
from sparse annotations. The bounding box label existing in
a specific frame is set as an initial bounding box in the time
domain and used as an input for a single-object tracker. If the
box size of the new predictive output of the tacker changes
less than a threshold compared to the previous predictive out-
put, it was assumed to be a pseudo annotation. Figure 2 illus-
trates the proposed goal of semi-supervised learning.

Using the proposed approach, we were able to train
an object detection network effectively using the EPIC-
KITCHENS-55 dataset. Subsequently, a joint NMS-based
ensemble [10] was performed for the FCOS models with
inhomogeneous backbones. Therefore, we achieved the first
place in the Seen evaluation set and runner-up in the Unseen
evaluation set under the IoU > 0.5 of the EPIC-KITCHENS
2020 object detection challenge.

2. RELATED WORK

Object Detection. CNN-based object detection models are
largely divided into one-stage or two-stage models. In the
one-stage model, (e.g., YOLO [5, 11], SSD [6, 12], and Reti-
naNet [13]), the process of predicting the class and position
of an object is performed under one structure. In general, it
is known that the regression accuracy of the model is lower
than that of the two-stage model, because classification and
regression are performed in one structure. In the case of the
two-stage model, prior knowledge of the location of the ob-
ject is estimated from the region proposal network (RPN) [7].
RPN determines objectness using a class-agnostic subnet,
and class-aware detection is performed through the subse-
quent head structure. Faster R-CNN [7], R-FCN [8], Cascade
R-CNN [14], and Cascade RPN [15] are representative of

various head structures with relatively high regression accu-
racy. Models such as RefineDet [15] that combines one-stage
and two-stage models have also been proposed. On the other
hand, detectors utilizing other parameterizations for bound-
ing box regression rather than structural advantages, such as
FCOS [9], have also been proposed.

Semi-supervised learning for object detection. Object de-
tection using semi-supervised learning is used in situations
where it is difficult to manually acquire a sufficient num-
ber of annotations to learn, or when pseudo labels are to be
obtained from a relatively large number of unlabeled data
[16, 17, 18, 19]. In [16], the author’s proposed an iterative
framework for evaluating and retraining pseudo-labels using
pre-trained object detectors and robust trackers to obtain good
pseudo-labels in successive frames. In [17], it was possible to
achieve improved detection performance in the Open Image
Dataset V4 by utilizing part-aware sampling and RoI pro-
posals to obtain good pseudo labels for sparsely annotated
large-scale datasets. In [18], to efficiently use unlabeled data
from the MS-COCO dataset, co-current matrix analysis was
used to generate good pseudo labels by using prior infor-
mation of the labeled dataset. The proposed single-object
tracker-based semi-supervised learning is similar to [16] in
that it uses a tracker, but has a difference in obtaining dense
annotation information for a specific image by using the ex-
isting lean annotation information. Simultaneously, because
the object detector is not used as the initial input for tracking,
training is not applied as an iterative training scenario.

Single-object visual tracking. In single-object tracking [20,
21, 22, 23], the Siamese network-based visual tracker showed
balanced accuracy and speed across various datasets. The
Siamese network-based tracker is trained with the similarity
of the CNN feature for the target image and the input im-
age for tracking. We used SiamMask [22] as a single object
tracker, which uses box and mask information together with
the similarity of features to the tracking target.

3. SEMI-SUPERVISED LEARNING WITH SINGLE
OBJECT TRACKER

The bounding boxes for the objects in the EPIC-KITCHENS-
55 dataset were not densely annotated in all training frames,
but rather sparsely in the action sequences. We used a single-
object tracker to achieve the goal shown in Figure 2 with
an automated procedure. Among the various single-object
trackers, SiamMask [22] was used, which showed a balanced
performance for tracking accuracy and speed. We performed
bidirectional tracking with the SiamMask trained from the
DAVIS dataset [24], using each bounding box as the initial
value for a single object. The details of forward tracking with
SiamMask for an action clip input are described in Algorithm
1. Algorithm 1 is used in the same manner as backward track-



Algorithm 1: Forward tracking
Input: Action clip (A), pre-trained tracking model

(T ), a set of bbox for initial input (BB), threshold
of tracking score (ρ1), threshold of a box size
difference between two pair of tracked bbox (ρ2)

Output: BB in Q from T
Initialize an empty queue Q
while bbox bc,i with class c at i-th frame available

from BB do
Get a list of frames FF in forward from i-th

frame in A;
Initialize T with bi from A;
Initialize a variable pres with a size of bc,i to
store a size of object from T at previous frame;

while each frame in FF do
Get a bbox bc,k from T at k-th frame;
crnts := a size of bc,k;
if |prevs − crnts| ≤ ρ1 then

prevs := crnts;
Add bc,k to Q;

else
break;

end
end

end

Fig. 3. Example of the result of Algorithm 1. Frames
marked with blue boxes are frames that have been tracked
with the same object since tracking started, and a frame
marked with a red box is a frame whose tracking is termi-
nated due to the termination condition of Algorithm 1.

ing to complete the bidirectional tracking. Figure 3 shows
an example of the start and end of tracking according to Al-
gorithm 1 on a single object, and Figure 4 shows training
images with pseudo labels generated after tracking an object.

4. EPIC-KITCHENS OBJECT DETECTION
RESULTS

Training details. We used Faster R-CNN [7] and Cas-
cade R-CNN [14] as anchor-based detectors and FCOS
[9] as anchor-less detectors to compare the performance of
the EPIC-KITCHENS-55 dataset. ResNet-50, ResNet-101,
ResNeXt-101, and HRNetV2p-W32 pre-trained with Ima-
geNet were used for backbones, and training details for each

Fig. 4. Changes in training images after tracking. An ex-
ample of the final annotations to be used for semi-supervised
learning is shown on the training images indicated by the red
dotted line.

Table 1. Performance comparison of anchor-based and
anchor-less detectors. If the model name has a ‘+’, it is
the result of evaluation using tracker-based semi-supervised
learning. The highest performance in a single model and the
highest performance in an entire model are shown in bold.

Detector backbone Seen Unseen
- - > 0.05 > 0.5 > 0.75 > 0.05 > 0.5 >0.75

Faster R-CNN ResNet-101 37.54 28.64 6.92 32.83 23.16 5.55
Cascade R-CNN HRNet-V2P 30.44 24.17 8.73 23.87 18.05 6.81

FCOS HRNet-V2P 48.44 34.87 11.02 43.88 30.68 9.27
FCOS ResNet-50 46.96 34.51 10.09 42.46 29.49 7.48
FCOS ResNet-101 49.77 35.8 10.15 43.39 28.98 7.86
FCOS ResNeXt-101 48.17 33.95 9.86 41.79 27.27 7.19

FCOS+ ResNet-101 50.27 35.89 10.57 43.14 29.82 7.76
FCOS Ensemble+ - 58.27 44.48 15.36 55.72 41.12 12.5

combination of backbone and head structure are shown in
Supplementary (Supp.) Table 1. All the experiments were
conducted using the MMDetection library [25].
Anchor-based vs. anchor-less detector. Table 1 shows the
training performance of a single model of an anchor-based
detector and an anchor-less detector. According to Table 1,
the performance of anchor-less detectors is generally better
than that of anchor-based detectors. Supp. Figure 1 shows
that the training loss curves and anchor-less detector curves
are more stable than anchor-based curves. Simultaneously,
Table 1 shows the performance change of the FCOS model
according to different backbones. For a single model, it was
confirmed that the FCOS model utilizing the ResNet-101
backbone achieved the best generalization performance in the
Seen set, and the HRNet backbone model performed the best
in the Unseen set.
Semi-supervised learning. We used the pre-trained SiamMask
model from the DAVIS dataset [24] to generate pseudo la-
bels, and the labels were used for training the FCOS with
ResNet 101. Table 1 shows that the generalization perfor-
mance of the FCOS models under IoU > 0.5, is improved
when using semi-supervised learning based on single-object
tracking. However, we only generated pseudo-labels in a few
shot classes. As shown in Table 2, the performance of our
semi-supervised FCOS model only shows an improvement in
a few shot classes. If our proposed method were applied in
many shot classes, there would be much more improvement.
Inhomogeneous backbone ensemble. We performed ensem-
ble modeling for each trained model in Table 1 to achieve the
best detection performance. We used the joint NMS technique



Table 2. Performance comparison of our method and
inhomogeneous backbones in few shot classes and many
shot classes of the Seen images. Detectors are sorted in de-
scending order by mAP with IoU > 0.5 in few shot classes.

Detector backbone Few shot classes Many shot classes
- - > 0.05 > 0.5 > 0.75 > 0.05 > 0.5 >0.75

FCOS Ensemble+ - 47.44 35.75 14.32 60.77 46.5 15.6
FCOS+ ResNet-101 39.38 27.28 7.43 52.79 37.89 10.83
FCOS ResNet-101 37.69 25.75 6.26 52.57 38.13 11.05
FCOS ResNeXt-101 35.43 25.68 8.63 51.13 35.87 10.14
FCOS HRNet-V2P 36.98 25.03 10.57 51.1 37.16 11.13
FCOS ResNet-50 32.89 24.14 9.28 50.21 36.91 10.28

Fig. 5. The probability distributions of prediction score
in the test images. For equal comparison, all models were
trained for 24 epochs and two random seeds, A and B.

[10], where we can achieve an ensemble by applying NMS to
bounding boxes and chose 300 boxes in order of high scores,
owing to a submission rule of the challenge that allows only
300 boxes in a test image for the evaluation. Table 1 shows the
performance change of the Seen and Unseen sets according
to the ensemble combination. We confirmed that the ensem-
ble model can achieve a very large performance improvement
compared to a single model, and our SSL method is also help-
ful for the ensemble. Figure 6 shows the performance pub-
lished on the EPIC-KITCHENS object detection challenge
page. Finally, we achieved the first rank rank in the Seen
set and runner-up performance in the Unseen set through an
inhomogeneous backbone ensemble under IoU > 0.5.
Discussion. We analyzed the performances in detail by break-
ing down into few-shot and many shot classes, as shown in
Table 2. FCOS with ResNet 101 was the best in many shot
classes but not in a few shot classes, and FCOS with HRNet
was third in many shot classes but not in few-shot classes.
We found that object detectors with different backbones not
only exhibited general performance differences, but also had
different views of recognition. This also occurred for the de-
tector trained using our method. Our semi-supervised FCOS
with the ResNet-101 model performed the best in a few shot
classes and the second best in many shot classes. We visu-
alized the inference results for each model in Supp. Figure
2, and as each model shows different predictions rather than
just for a better performance model, including predictions of
a worse model. We also compared how the prediction score

Fig. 6. EPIC-KITCHENS 2020 object detection challenge
evaluation page. The entry marked with a red box is the final
performance evaluated by the our proposed approach. Each
entry is ranked under IoU > 0.5 evaluation.

distributions were different in the test images, as shown in
Figure 5.

5. CONCLUSION

We performed single-object tracker-based semi-supervised
object detection to effectively train a dataset with sparse an-
notations on sequence images. The EPIC-KITCHENS-55
dataset was used to verify the utility of the proposed tech-
nique, and it showed good performance in the ensemble as
well as in the single model. However, it needs to be analyzed
more closely with semi-supervised learning about the advan-
tages and disadvantages of the anchor-based model, and there
is a limitation in that a simple rule-based engine is used to
obtain a pseudo label. For future improvement, it is necessary
to perform quantitative analysis on the effect of anchors and
RPN on sparse annotation data training, while simultaneously
considering how to improve the tracking rules, or utilize the
results obtained in the tracking process during training.
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