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Massive amount of high precision depth maps are
produced with the rapid development of

equipment like laser scanner or LiDAR.

Examples

”

laser scanner : FARO Focus S350 scanner

360° Velodyne Laserscanner

Stereo Camera Rig

LiDAR : Velodyne HDL-64E LiDAR N




Proposed method

End-to-end lossless compression network targeted at the high precision depth maps
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Pre-processing of depth maps

We split the high-bit-depth depth
map into two low-bit-depth depth
maps. These two low-bit-depth
depth maps are denoted as most
significant bytes (MSB) and least
significant bytes (LSB)

respectively.
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Loss function

Overall, there are two compression Riossy = Ep(z) Eqg.210) [— 1082 P(2) — log, p(§]2)]

processes: the first one is a lossy Riossiess = i) B ronle)[— 1082 P(T|Z, Test)]

compression and the other is a

lossless compression. Therefore, the

whole compression rate consists of D(z,%) = Ejw) Eyae) ||z — 72
two parts. I, Test) = Eaay Bgtraaats) || Fostlla

Besides rate terms, we add two

distortion terms. L = R.!ossy + Riossiess + Q% D(T-, -T) -+ 5 * D(T, T‘e,gt)
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Table 1: Compression performance comparison of our method and eleven engineered codecs.
We show lossless compression performance in terms of bpp (bits per pixel). The precision
of depth maps is Imm.

Results coding schemes DIODE | SementicKITTI
ZLIB 8.4090 13.4663
We compare our proposed GZIP | 7.9963 12.8679
. . non-learned data lossless B79 49614 9 7333
method with nine non- LZMA | 4.9542 8.5063
learned codecs and two SVIE | Bpala .
BPG 5.5042 10.0245
learned codecs, including non-learned image lossless PNG 9.2862 10.0981
) FILF 4.0304 10.8983
lossless data compression WEBP | 4.0807 799249
methods and lossless image . image lossles IDF ) 5.4870 O-7110
g learned image lossless SReC 1 9668 8.0721
compression methods. learned depth map lossless | Ours 3.7514 7.3725

Table 4: Ablation study on fusion network and LMM-based deep entropy network with
a =25 0=25,d=>512.

modules Hpey
datasets fusion network LMM-based deep R R. Rjossiess | overall bpp
entropy network ¥
v v 0.3265 | 0.0103 | 3.4147 3.7514
v 0.3002 | 0.0101 | 3.5955 3.9059
SR IEL v 0.3322 | 0.0103 | 3.5058 3.8483
0.2516 | 0.0093 | 3.7428 4.0037




Sensitivity analysis

Sensitivity analysis for

hyper-parameters.
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Table 2: Sensitivity analysis for hyper parameter d with a = 100 and 8 = 100.

datasets hyper parameter setting RNRIOSWRF Riossiess | overall bpp
9 2
d = 1024 0.3630 | 0.0100 | 3.5692 3.9423
d= 512 0.3413 | 0.0101 3.4838 3.8352
DIODE d= 256 0.3590 | 0.0103 | 3.4949 3.8642
d=128 0.3573 | 0.0103 | 3.5680 3.9357
d = 64 0.3625 | 0.0099 | 3.6571 4.0295
d=128 0.3734 | 0.0090 7.2628 7.6453
d =64 0.3683 | 0.0088 | 7.3465 7.7236
SementicKITTI d=32 0.3813 | 0.0093 | 7.1916 7.5823
d=16 0.4245 | 0.0096 7.0674 7.5015
a==5 0.4913 | 0.0099 | 7.0735 7.5747

Table 3: Sensitivity analysis for hyper parameters o and S.

Rios s R.‘,‘ ’
R-;;: R ossless

datasets hyper parameters setting

overall bpp

a =400, 8 = 400, d = 512 0.3681 | 0.0102 | 3.5198 3.8981

e =200, =200, d= 512 0.3493 | 0.0102 | 3.4500 3.8096

DIODE a =100, 8= 100, d= 512 0.3413 | 0.0101 3.4838 3.8352
&:=50, 8 =80, 4 =512 0.3316 | 0.0103 | 3.4251 3.7669

=25 =258 d =512 0.3265 | 0.0103 | 3.4147 3.7514

a =400, 8 =400, d = 16 0.4840 | 0.0100 | 7.1261 7.6201

a= 200, 8 =200, d = 16 0.4533 | 0.0099 | 7.0739 7.5370

SementicKITTI a=100,8=100,d=16 0.4245 | 0.0096 | 7.0674 7.5015
a=50,8=50,d=>512d=16 | 0.4112 | 0.0097 | 7.0195 7.4405

a=25 8=25,d=512d =16 | 0.4004 | 0.0097 | 6.9624 7.3725




Thank you for watching!
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