IBM Watson

Semantic Word Embedding Neural Network Language Models for Automatic Speech Recognition

Kartik Audhkhasi, Abhinav Sethy Bhuvana Ramabhadran

Watson Multimodal Group IBM T. J. Watson Research Center

Motivation

• Semantic word embedding algorithms (e.g. word2vec and GloVe) aim to capture semantic information from text.

Motivation

- Semantic word embedding algorithms (e.g. word2vec and GloVe) aim to capture semantic information from text.
- Semantic embeddings are diverse compared to word embeddings learned by a neural network language model (NNLM).

Sim.	Speech		Machine		Learning	
Rank	GloVe	FNNLM	GloVe	FNNLM	GloVe	FNNLM
1	Remarks	Address	Machines	Stun	Learn	Learn
2	Address	Event	Guns	Pellet	Teaching	Learned
3	Speeches	Ceremony	Gun	Celebratory	Learned	Learns
4	Comments	Statement	Hand	Millimeter	Skills	Complain
5	Bush	Remarks	Automatic	Sharpnel	Teach	Confirmation

Top-5 nearest words found using cosine similarity on GloVe and feedforward NNLM (FNNLM) embeddings.

What is the GloVe Algorithm for Computing Semantic Word Embeddings?

- GloVe performs a bilinear approximation of the word co-occurrence matrix computed over training data.
- The *V* x *V* dimensional word co-occurrence matrix **C** is obtained by traversing training text and counting co-occurrences.

J. Pennington, R. Socher, C. D. Manning, "GloVe: Global Vectors for Word Representation", Proc. EMNLP, Vol. 14. 2014.

- GloVe performs a bilinear approximation of the word co-occurrence matrix computed over training data.
- The *V* x *V* dimensional word co-occurrence matrix **C** is obtained by traversing training text and counting co-occurences.

J. Pennington, R. Socher, C. D. Manning, "GloVe: Global Vectors for Word Representation", Proc. EMNLP, Vol. 14. 2014.

- GloVe performs a bilinear approximation of the word co-occurrence matrix computed over training data.
- The *V* x *D* dimensional GloVe matrix **G** is obtained as follows:

J. Pennington, R. Socher, C. D. Manning, "GloVe: Global Vectors for Word Representation", Proc. EMNLP, Vol. 14. 2014.

- GloVe performs a bilinear approximation of the word co-occurrence matrix computed over training data.
- The *V* x *D* dimensional GloVe matrix **G** is obtained as follows:

$$\begin{aligned} \mathbf{G}^*, \mathbf{b}^* &= \arg\min_{\mathbf{G}, \mathbf{b}} \sum_{i,j=1}^V f(\mathbf{C}(i,j)) \Big(\mathbf{G}(i) \mathbf{G}(j)^T + b(i) \\ &+ b(j) - \log \mathbf{C}(i,j) \Big)^2 \end{aligned}$$

where **b** is a vector of biases and f(x) is the weighting function:

$$f(x) = \min\{1, (x/x_{\min})^{\alpha}\}\$$

How do we include GloVe embeddings in a feed-forward NNLM?

A Standard Feed-forward NNLM (FNNLM)

• A feed-forward NNLM predicts the next word by passing continuous embeddings of the history words through a feed-forward NN:

A Standard Feed-forward NNLM (FNNLM)

• A FNNLM uses two different word embeddings learned to minimize training text perplexity.

Semantic Word Embedding (SWE) FNNLM

• A SWE-FNNLM incorporates the GloVe matrix **G** as follows:

IBM Watson

Intuition Behind SWE-NNLM

• Input feature concatenation fuses two diverse word embeddings.

Intuition Behind SWE-NNLM

• Output weight expansion performs log-linear interpolation of two un-normalized FNNLMs.

LM Experimental Setup

- We trained all NNLMs on a 12M word subset of the 2007 IBM GALE English Broadcast news ASR system.
- Vocab size limited to 20K words.
- 300-dimensional GloVe word embeddings trained on the 2B word English Gigaword corpus.
- LM training used a mini-batch based stochastic gradient descent.
- We do not update the GloVe embeddings during LM training since it gave insignificant perplexity reduction.

• LM perplexities on dev04 set:

LM	Perplexity	% Reduction
6gm KN	144.5	-
5gm FNNLM (300,500) 300-dim embeddings, 500 hidden neurons	144.9	-0.3%

6gm KN + FNNLM	118.3	18.1%
----------------	-------	-------

• LM perplexities on dev04 set:

LM	Perplexity	% Reduction
6gm KN	144.5	-
5gm FNNLM (300,500) 300-dim embeddings, 500 hidden neurons	144.9	-0.3%
5gm SWE-FNNLM (300,500)+300	128.5	11.1%
6gm KN + FNNLM	118.3	18.1%
6gm KN + SWE-FNNLM	111.8	22.6%
All	109.6	24.2%

- SWE-FNNLM gives significant perplexity improvement over a standard FNNLM.
- FNNLM of similar size (600,800) gives worse perplexity of 151.

IBM Watson

LM Results

• Is including GloVe embedding in the output layer important?

• Is including GloVe embedding in the output layer important?

LM	Perplexity	% Reduction
6gm KN	144.5	-
5gm Input-only SWE-FNNLM	134.2	7.1%

• Is including GloVe embedding in the output layer important?

LM	Perplexity	% Reduction
6gm KN	144.5	-
5gm Input-only SWE-FNNLM	134.2	7.1%
5gm full SWE-FNNLM	128.5	11.1%

• Both input feature fusion and input → output weight expansion contribute significantly to perplexity improvement.

• SWE-FNNLM gets a head-start during training due to diverse embeddings trained on large corpus.

• SWE-FNNLM enables rapid adaptation of LMs on new in-domain data.

ASR Lattice Rescoring Setup

- Acoustic model is CNN-HMM hybrid system trained on 400 hrs of broadcast news data.
- Decoder vocabulary is 80K words.
- Baseline LM is a linear interpolation of 4gm KN LMs trained on different data sources from a 350M word corpus.
- We generated lattices on the rt04 test set using a pruned baseline LM.

ASR Lattice Rescoring Results

• WERs on the rt04 test set after lattice rescoring:

LM	WER	% Reduction
4gm KN	11.3%	-
4gm KN + FNNLM	11.0%	2.6%

ASR Lattice Rescoring Results

• WERs on the rt04 test set after lattice rescoring:

LM	WER	% Reduction
4gm KN	11.3%	-
4gm KN + FNNLM	11.0%	2.6%
4gm KN + SWE-FNNLM	10.7%	5.3%

The above WER reductions are significant (p < 0.001) using NIST SCTK's sc_stats.

ASR Lattice Rescoring Results

• WERs on the rt04 test set after lattice rescoring:

LM	WER	% Reduction
4gm KN	11.3%	-
4gm KN + FNNLM	11.0%	2.6%
4gm KN + SWE-FNNLM	10.7%	5.3%

The above WER reductions are significant (p < 0.001) using NIST SCTK's sc_stats.

- Comparison with 350M word LMs: Model M (10.6%) and FNNLM (10.3%).
- A. Sethy, S. Chen, E. Arisoy, B. Ramabhadran, *"Unnormalized exponential and neural network language models"*, Proc. ICASSP, 2015.

Conclusion

- Semantic word embeddings trained on a large corpus improve neural network language models.
- The performance benefit appears due to diversity of semantic embeddings to the embeddings learned by a NNLM **and** large corpus used to train the semantic embeddings.
- Including semantic word embeddings through both feature fusion and input → output weight expansion helps LM performance.
- We are currently exploring application of semantic word embeddings to recurrent NNLMs.