

Compressing the Tree of Canonical Huffman Coding

Qi Cheng^{1,2} Wei Yan^{1,2} Sian-Jheng Lin³ Nenghai Yu^{1,2} ¹University of Science and Technology of China ²CAS Key Laboratory of Electromagnetic Space Information ³Theory Lab, Cenrtal Research Institute , 2012 Labs, Huawei Technology Co.Ltd

CONTENTS

Backgrounds

The introduction of two conventional methods for compressing the tree of canonical Huffman coding

two conventional methods

encode the number of leaf nodes in each layer The first method need to encode the string of number $(l_{max}, n_1, \dots, n_{l_{max}})$. Use an integer with $[log_{2^{(N-1)}}]$ bits to encode l_{max} . Then use $L = [log_{2^{(N+1)}}]$ bits to encode each n_i for $1 \le i \le l_{max}$. Thus, the total bits L_1 : $L_1 = [log_{2^{(N-1)}}] + l_{max} [log_{2^{(N+1)}}]$.

Encodes n_i from the l_{min} -th layer instead of the first layer. Then use $M = \lfloor log_{2(n_{max}+1)} \rfloor$ bits to encode each n_i for $l_{min} \leq i \leq l_{max}$. The second method need to encode the string of number $(l_{min}, l_{max}, M, n_{l_{min}}, \dots, n_{l_{max}})$. Thus, the total bits L_2 : $L_2 = 2\lfloor log_{2(N-1)} \rfloor + \lfloor log_{2(\lfloor log_{2(N+1)} \rfloor - 1)} \rfloor + (l_{max} - l_{min}) \lfloor log_{2(N+1)} \rfloor$.

Backgrounds

• an example

Layer	Number	Symbols
1	0	
2	2	<i>s</i> ₁ , <i>s</i> ₂
3	1	<i>s</i> ₃
4	5	S_4, S_5, S_6, S_7, S_8
5	2	s_9, s_{10}

- The first method need total bits L_1 : $L_1 = \lfloor log_{2^{(N-1)}} \rfloor + l_{max} \lfloor log_{2^{(N+1)}} \rfloor = 24.$
- The second method need total bits L_2 : $L_2 = 2 \left[log_{2^{(N-1)}} \right] + \left[log_{2^{(\lceil log_{2^{(N+1)}} \rceil - 1)}} \right]$ $+ (l_{max} - l_{min}) \left[log_{2^{(N+1)}} \right] = 22.$

Motivation: how to compress the canonical Huffman coding tree more effective?

Proposed method

The new method for compressing the tree of canonical Huffman coding

idea: store the number of internal nodes $\{b_i\}$ instead of the leaves $\{n_i\}$

encode method: the mixed radix conversion the algorithm :

Algorithm 1 ENCODING (S_1) : Encode a series of numbers $\{b_i\}$ into an integer

```
Require: A series of numbers \{b_i\}_{i=0}^{l_{max}-1}

Ensure: S_1

1: b_0 \leftarrow 1

2: S_{l_{max}} \leftarrow -2

3: for i = l_{max} - 1 to 1 do

4: S_i = S_{i+1} \times 2b_{i-1} + (b_i - 1)

5: end for

6: return S_1
```

Proposed method

The proposed method need total bits L_3 :

$$L_3 = [log_{2|S_1|}] + [log_{2(N-1)}].$$
 to encode the number
of bits for encoding S_1

 S_2 S_1 S_3 s4 s5 s6 s7 s8 $S_9 S_{10}$

Table 1: The encoding of the string of numbers (2, 2, 3, 1).

the number

i	1	2	3	4	5
Number of internal nodes b_i	2	2	3	1	
Upper bound $2b_{i-1}$	2	4	4	6	
$b_i - 1$	1	1	2	0	
S_i	-365	-183	-46	-12	-2

$$L_3 = \left[log_{2^{|-365|}} \right] + \left[log_{2^{(10-1)}} \right] = 13$$

Experimental results

University of Science and Technology of China

The comparison of the compression ratio between the proposed method and two conventional methods.

Experimental data: Calgary corpus

We use a conventional way to construct the canonical Huffman tree for various data sets.

text	[4]	[13]	ours
bib	119	87	52
book1	126	77	55
book2	119	87	58
geo	96	79	52
news	105	77	52
obj1	54	55	28
obj2	84	62	47
paper1	112	82	56
paper2	119	73	57
pic	144	104	70
proge	105	77	49
progl	105	77	52
progp	112	73	54
trans	119	87	57

Table 2: Number of bits.

 R_1 R_2 40.23%bib 56.30%56.35%28.57%book1 51.26%33.33%book2 45.83%34.18%geo 50.48%32.47%news 48.15%49.09% obj1 44.05% 24.19%obj2 50%31.71% paper1 52.10%21.92%paper2 32.69%51.39%pic 53.33%36.36%proge 32.47%50.48%progl 51.79%26.03%progp 52.10%34.48% trans 50.97%32.69%average

Table 3: Compression ratio.

text

how to compress the canonical Huffman coding tree more effective?

motivation

method

results

This

work

Use the mixed radix conversion to encode the number of the internal nodes.

Simulation shows that the proposed method can reduce 51% and 33% space with the conventional methods on average.

Data Compression Conference

Thank you !

For more details, please refer to our paper: Compressing the Tree of Canonical Huffman Coding

That is all my presentation

Reporter: Qi Cheng