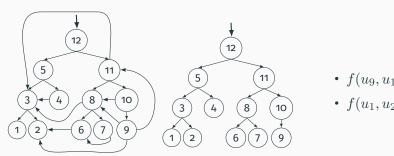
Datastructure Lower Bounds for Depth First Search

Christian Engels¹ Sankardeep Chakraborty² Thursday 24th February, 2022


¹National Institute of Informatics, Tokyo

²University of Tokyo

Problem

Problem

LexDFS is the problem of given a graph G and two vertices v_1, v_2 , decide if v_1 occurs before v_2 on the DFS order.

- $f(u_9, u_{10}) = 0$.
- $f(u_1, u_2) = 1$.

Known Upper Bounds

 \boldsymbol{w} the word size, t number of probes, \boldsymbol{m} number of edges.

Theorem (Chakraborty and Sadakane)

There exist an algorithm producing a datastructure of size

$$(1+\epsilon)n\log n + 2n + o(n).$$

LexDFS can be solved in constant time and the preprocessing takes O(m+n).

Theorem (This Work)

- The datastructure needs size at least $\Omega(n\log(m/n))$ bits.
- For t probes the datastructure needs at least $n + \Omega(n/w^{O(t)})$ bits.
- A datastructure for answering the degree of a vertex in the DFS tree needs at least $\Omega(n)$ bits.

Communication Complexity and Richness

Transfer

- · Alice gueries the datastructure.
- Bob has the datastructure and answers.
- · Both want to know the answer to a function.
- Alice queries use $t \log s$ bits (s size of the structure, t number of queries).
- Bob answers with tw bits (w word size).

Methods

- · Standard Communication Complexity Methods.
- Communication Complexity using Milterson's Richness Method.
- Patrusca and Viola's Probe vs Size Tradeoff Method.