2022 Data Compression Conference

Learning Tucker Compression for Deep CNN

Pengyi HAO*, Xiaojuan LI*, and Fuli WU^{\dagger}

Zhejiang University of Technology, Hangzhou, China haopy@zjut.edu.cn,2112012075@zjut.edu.cn,fuliwu@zjut.edu.cn

Why Model Compression?

 mit
 container shp
 motor scoter
 logger

 mit
 container shp
 motor scoter
 logger

 mit
 motor scoter
 logger
 logger

 mit
 motor scoter
 logger
 logger

 motor scoter
 motor scoter
 logger
 logger

</tater</table>

Image classification

•••

Object tracking

Object detection

Resource-limited Devices

Limited memory space, limited computing power,etc.

Deep CNN's Challenge

high computational cost

What's tensor decomposition?

Tensor decomposition approximately decomposes the high-order tensors of CNN's layers into several low-dimensional tensors.

★Tensor Decompsition can be divided into **two categories**

Single layer decomposition

2022

DCC

Global decomposition

Problem formulation

Jointly optimizing of CNN's loss function and Tucker's cost function (training and compressing is carried out at the same time)

 $\min_{W} L(W) + \lambda C(W) \quad \text{s.t. rank} (W_k) = r_n^k \le R_n^k, k = 1, 2, \dots, K$

-L(W) : loss function (such as cross entropy for classification)

C(W): the linear cost of tucker compression (depend on tucker rank)

 $\lambda \ge 0$: determines the distribution of tucker rank

 $\lambda \geq 0 \implies \text{tucker rank} \implies C(W)$

Optimization (How to select tucker rank)

Introducing tucker approximate tensor: $\Theta = (\Theta_1, \dots, \Theta_K)$

$$\begin{split} \min_{W,\Theta,r_3,r_4} L(W) + \lambda C\left(r_3,r_4\right) & s.t. \quad \operatorname{rank}\left(\Theta_k\right) = r_3^k, r_4^k \le R_3^k, R_4^k, \quad k = 1, \dots, K \\ \text{quadratic penalty method} + \text{augmented Lagrangian method} \\ Q\left(W,\Theta,r_3,r_4;\mu\right) = \boxed{L(W)} + \lambda C\left(r_3,r_4\right) + \boxed{\frac{\mu}{2}\sum_{k=1}^K \left\|W_k - \Theta_k - \frac{1}{\mu}\varphi_k\right\|^2} \\ + \frac{\mu}{2}\sum_{k=1}^K \left\|X_k^{(3)} - M_k^{(3)} - \frac{1}{\mu}\varphi_k\right\|^2 + \frac{\mu}{2}\sum_{k=1}^K \left\|X_k^{(4)} - M_k^{(4)} - \frac{1}{\mu}\varphi_k\right\|^2 \\ & \text{s.t.} \quad \operatorname{rank}\left(\Theta_k\right) = r_3^k, r_4^k \le R_3^k, R_4^k, k = 1, \dots, K \end{split}$$

2022

DCC

Algorithm 1 Learning Tucker Compression Algorithm.

Input: K-layer CNN with weight W; layer-wise cost function C; hyperparameter λ 1: Initialization: $r_3, r_4, \Theta, \mathcal{G}, A^{(3)}, A^{(4)}, \varphi$ 2: for $\mu = \mu_0 < \mu_1 < \cdots < \infty$ do if $||W - \Theta||$ is not small enough: then 3: get W from Eq.(7)4: for $\mathbf{k} = 1, 2 \cdots K$ do 5: get $X_k^{(3)}, X_k^{(4)}$ based on Unfolding-Matricization of W_k 6: get r_{3}^{k} , r_{4}^{k} from Eq.(8), Eq.(9)7: $A_k^{(3)}, A_k^{(4)} = r_3^k, r_4^k$ leading left singular vector of $X_k^{(3)}, X_k^{(4)}$ 8: $\mathcal{G}_k = \mathbf{W}_k \times {}_3A_k^{(3)} \times {}_4A_k^{(4)}$ 9: get Θ_k from $\mathcal{G}_k, A_k^{(3)}, A_k^{(4)}$ 10: end for 11: $\varphi = \varphi - \mu (\mathbf{W} - \mathbf{\Theta})$ 12:end if 13:14: **end for** 15: Using global optimal r_3, r_4 to decompose W based on Eq.(11)**Output:** the decomposed K-layer CNN

The Selection of CNNs for Datasets

Comparison between ResNet-34 and VGG-16 compressed by LTC

Dataset	Model	FLOPs(G)	\mathbf{SR}	$\operatorname{Params}(M)$	Acc $(\%)$
	ResNet-34	3.68	1.00	21.80	96.79
Chest X-Ray	LTC	0.07	51.10	0.80	<u>95.51</u> √
	VGG-16	15.65	1.00	134.28	97.00
	LTC	0.36	10.22	119.60	93.75
CIFAR10	ResNet-34	0.29	1.00	21.80	91.90
	LTC	0.01	22.38	1.21	89.13
	VGG-16	0.35	1.00	33.65	93.60
	LTC	0.06	5.61	19.62	91.89

The hyperparameter λ

Tucker rank distribution of compressed networks with different λ :

2022 DCC

The hyperparameter λ

The Visualization of Accuracy, Parameters and FLOPs with different λ :

2022 DCC

Layer analysis

Ta	Table 2: Structural analysis of ResNet-34 on Chest X-Ray							
	Model	FLOPs(G)	$\operatorname{Params}(M)$	Acc $(\%)$				
	ResNet-34	3.68	21.80	96.79				
	Conv1	3.57	21.79	94.79				
	Layer1	3.05	21.60	96.63				
	Layer2	2.90	20.80	96.63				
	Layer3	2.53	15.94	96.96				
	Layer4	3.14	10.83	96.31				
	Layer1 and Layer4	2.51	10.61	96.79				
	Layer1 to Layer4	0.28	1.39	96.79				
	Conv1 to Layer4	0.28	1.39	96.00				

 T_{-1} 0. 01 1 1 f D NL - 1 94 1 ٠

Layer analysis

 Table 3: Structural analysis of VGG-16 on CIFAR10

Model	FLOPs(M)	$\operatorname{Params}(M)$	$\mathrm{Acc}(\%)$	Model	FLOPs(M)	$\operatorname{Params}(M)$	$\mathrm{Acc}(\%)$
VGG-16	352.41	33.65	93.60	Conv8	335.40	32.58	81.13
Conv1	351.74	33.65	84.88	Conv9	315.21	31.32	83.68
Conv2	333.76	33.63	84.03	Conv10	315.18	31.32	80.97
Conv3	351.87	33.65	86.99	Conv11	343.18	31.34	78.25
Conv4	351.25	33.64	78.76	Conv12	343.19	31.34	88.36
Conv5	335.60	33.38	88.14	Conv13	343.27	31.36	76.99
Conv6	316.85	33.09	80.46	Conv2-13	63.38	19.62	92.45
$\operatorname{Conv7}$	316.82	33.09	85.15	ConvAll	62.74	19.62	91.89

Comparison with other methods

Table 4: Comparison of different tensor decomposion methods and lightweight networks

	CIFAR10			(Chest X-Ray		
	SR	\mathbf{CR}	Acc $(\%)$	\mathbf{SR}	CR	Acc $(\%)$	
MobileNetV2[17]	/	/	66.54	/	/	86.22	
ShuffleNetV2[18]	/	/	72.00	/	/	91.67	
ADATucker(Resnet-20)[14]	/	12.00	90.97	/	/	/	
HOTCAKE(SimpleNet)[15]	/	3.13	90.95	/	/	/	
$Tucker_VBMF(VGG-16)[4]$	3.01	1.61	90.50	3.50	1.10	96.00	
LRC(VGG-16)[16]	3.57	1.61	90.92	23.35	1.12	93.59	
LTC(VGG-16)	5.61	1.71	91.89	41.18	1.12	94.39	
$Tucker_VBMF(ResNet-34)[4]$	18.98	5.01	85.30	4.97	4.67	96.30	
LRC(ResNet-34)[16]	11.28	15.35	88.30	11.15	15.35	95.35	
LTC(ResNet-34)	22.38	17.99	89.13	13.14	15.58	96.00	

Conclusion

 proposed Learning Tucker Compression (LTC) to speed up CNNs.

- LTC takes the tucker-2 decomposition as a joint optimization of CNN's weights and tucker's ranks.
- Experiments show that LTC can effectively reduce the amount of parameters and accelerate CNNs with satisfied classification accuracy.

Thank You For Your Watching!