

Institute of Media, Information, and Network

Efficient Decoder for Learned Image Compression via Structured Pruning

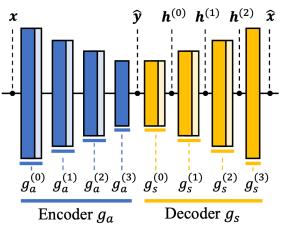
Liewen Liao, Shaohui Li, Jixiang Luo, Wenrui Dai, Chenglin Li, Junni Zou, and Hongkai Xiong liaolw@sjtu.edu.cn Department of Electronic Engineering Shanghai Jiao Tong University

Contents

- Background & Motivations
- Methodology
- Experimental Results
- Outlook

Background & Motivations

• Symmetric architecture in Learned Image Compression:



• Varying computational resources in different decoding devices:

Methodology

• Effectiveness evaluation via activation range estimation:

Algorithm 1 Network Pruning on Learned Decoder

Input: A pre-trained learned compression model with encoder g_a and decoder g_s , the initial value for input \boldsymbol{x}_0 , the number of iterations for gradient ascent N, the number of pruned channels on each layer s_i .

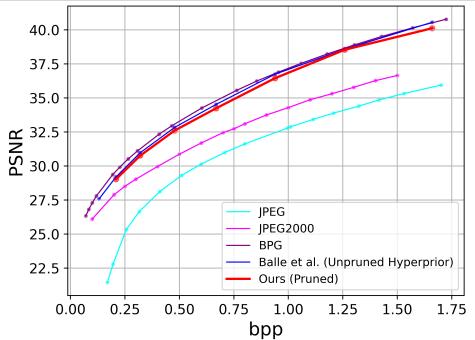
Output: A pruned decoder \tilde{g}_s .

for $i \leftarrow 2$ to 0 do \triangleright Each layer in the decoder. for $j \leftarrow 1$ to q do \triangleright Each channel of *i*-th layer. $n \leftarrow 0, \boldsymbol{x} \leftarrow \boldsymbol{x}_0$ while $n \leq N$ and not converged **do** \triangleright Loop for gradient ascent. $oldsymbol{x} \leftarrow oldsymbol{x} + \eta \cdot (\partial \dot{oldsymbol{h}}_{i}^{(i)} / \partial oldsymbol{x})$ $n \leftarrow n+1$ end while while $n \leq N$ and not converged **do** \triangleright Loop for gradient descent. $oldsymbol{x} \leftarrow oldsymbol{x} - \eta \cdot (\partial \ddot{oldsymbol{h}}_i^{(i)} / \partial oldsymbol{x})$ $n \leftarrow n+1$ $\begin{array}{l} \mathbf{end \ while} \\ e_j^{(i)} \leftarrow \dot{\boldsymbol{h}}_j^{(i)} - \ddot{\boldsymbol{h}}_j^{(i)} \end{array}$ \triangleright Record the effectiveness. end for for $k \leftarrow 1$ to s_i do Remove the j^* -th ineffective channel. end for end for Fine-tune the pruned model and return \tilde{g}_s .

Experimental Results

• Pruning performance:

Pruning Ratio r	Unpruned	0.20	0.33	0.40	0.55
Model Size (MB)	1.49	1.20	0.99	0.88	0.70
PSNR (dB)	32.84	32.75	32.66	32.61	32.43
PSNR decay (dB/MB)	-	-0.31	-0.32	-0.37	-0.52
Inference Time (s)	0.71	0.60	0.55	0.53	0.48
FLOPS (M)	3618	2656	1899	1533	1141



Outlook

- Pruning methods for image compression:
 - This paper focus on pruning pre-trained model to produce light-weighted models;
 - Design one-stage methods perform pruning and training simultaneously;
 - Novel light-weighted architecture;
- General network acceleration methods:
 - Quantization;
 - Distillation;
 - •

Institute of Media, Information, and Network

Thank You!

Liewen Liao, Shaohui Li, Jixiang Luo, Wenrui Dai, Chenglin Li, Junni Zou, and Hongkai Xiong liaolw@sjtu.edu.cn Department of Electronic Engineering Shanghai Jiao Tong University