

Synergies between in-loop and out-of-loop mapping for HDR-PQ content

Edouard François, Miloš Radosavljević, Alan Stein InterDigital

WE INVENT THE TECHNOLOGIES THAT MAKE LIFE BOUNDLESS

Context

Adaptive video content mapping

- Can bring significant compression gains for various types of content (SDR/HDR)
- Adapt the video signal depending on its statistical properties in order to better exploit the signal codewords range

1> interdigital

©2022 InterDigital, Inc. All Rights Reserved.

2/28/2022

Previous studies

Out-of-loop mapping

- Explored during MPEG work on HDR content coding [Lu et al 2016]
- Proposed in response to the CfP for video compression beyond HEVC [Rusanovskyy et al 2016, JVET-J0022]
- In-loop mapping
 - Proposed in response to the CfP for video compression beyond HEVC [JVET-J0015]
- Further investigated in JVET Core Experiments 2 versions studied
 - 1. Dynamic Range Adaptation (DRA): out-of-loop mapping [JVET-L0205]
 - 2. Luma mapping with chroma scaling (LMCS): in-loop mapping [JVET-M0427]
- In-loop LMCS finally adopted in VVC
 - More flexibility regarding temporal variations of the mapping function
 - No need for an additional buffer to the Decoded Picture Buffer (DPB)
 - Reference: [Lu et al 2020]

Purpose of this study

- Compare In-Loop / Out-of-Loop mapping
- Evaluate synergies of In-Loop and Out-of-Loop mapping
- Specific focus on HDR-PQ content

"Luma mapping with chroma scaling" (LMCS)

- In-loop solution
- Process (decoder)
 - Forward luma mapping applied to the inter-prediction blocks
 - Inverse luma mapping applied to reconstructed luma samples prior in-loop filtering
 - Inverse cross-component scaling applied to chroma residual

©2022 InterDigital, Inc. All Rights Reserved.

"Luma mapping with chroma scaling" (LMCS)

Signalling

- Forward luma mapping parameters signalled in APS
- Inverse luma mapping function inferred from the Forward luma mapping parameters
- Cross-component chroma scaling factors inferred from the Forward mapping parameters

VTM implementation

- HDR PQ
 - fixed mapping function used whatever the content
- SDR and HLG
 - mapping function is content-adaptive
 - LMCS is adaptively enabled/disabled at picture level

©2022 InterDigital, Inc. All Rights Reserved.

Out-of-loop mapping

• Out-of-loop solution

• pre-encoding process and post-decoding inverse process

• Process

- Luma intra-component mapping
- Chroma intra- or inter-component mapping

• Signalling in SEI message

- Luma mapping function signalled as piecewise linear model
- Chroma mapping functions signalled as piecewise linear model, or inferred from luma mapping function

Out-of-loop mapping

- Luma intra-plane process
- Chroma

Mode 0 – intra-plane process Mode 1 – cross-plane process

- $i = Y_{dec} >> K$ $Y_{post} = slope_{Y}[i] * (Y_{dec} (i << K)) + offset_{Y}[i]$
- $i = C_{dec} \gg K$ $C_{post} = slope_{C}[i] * (C_{dec} (i < K)) + offset_{C}[i]$
- $i = Y_{coloc} >> K \qquad sc = slope_{C}[i] * (Y_{coloc} (i << K)) + offset_{C}[i] \\ C_{post} = offset + sc * (C_{dec} offset)$
- Example of luma and chroma PWL functions (post-processing side)

©2022 InterDigital, Inc. All Rights Reserved.

Complexity of out-of-loop post-process

• Per Luma sample

- 1 mult, 2 adds, 2 right shifts, 1 left shift, 1 clipping
- Per Chroma sample (cross-comp mode)
 - 2 mults, 3 adds, 3 right shifts, 1 left shift, 1 clipping

• Note:

• as a reference, ALF in VVC requires 15 multiplications per sample, and CC-ALF 16 multiplications per sample [JVET-P1008]

Test conditions

• VTM12.0

• HDR-PQ test sequences

Sequence name	Frame count	Frame rate	Bit depth	Transfer Function
BalloonFestival	240	24 fps	10	PQ
Cosmos1	240	24 fps	10	PQ
EBU_Hurdles	500	50 fps	10	PQ
EBU_Starting	500	50 fps	10	PQ
Market	400	50 fps	10	PQ
ShowGirl	339	25 fps	10	PQ
SunRise	200	25 fps	10	PQ

• Reported configurations

- AI All Intra
- RA Random Access
- LDB Low Delay B

• Reported metrics

• DE100 (also noted "DE"), PSNRL100 (also noted "PSNRL"), wPsnrY, wPsnrU, wPsnrV

Implementation details

- Fwd and Inverse Luma mapping exactly same as in in-loop LMCS
- Cross-component Chroma scaling

In-loop	Out-of-loop
Residual chroma samples	Input (forward) and reconstructed (inverse) chroma samples
1 scaling factor per VPDU derived from co-located surrounding reconstructed luma samples	1 scaling factor per sample derived from co-located reconstructed luma sample
Chroma scaling function defined as successive fixed values per interval	Chroma scaling function defined as continuous Piece-wise linear function

Experiments - Test 1

- Ref: LMCS enabled / OLF SEI disabled
- Test: LMCS disabled / OLF SEI enabled (cross-comp mode)

			wPSNR		
	DE	PSNRL	Y	U	V
AI	-1.15%	-0.76%	-0.50%	-5.43%	-7.24%
RA	-2.41%	-1.72%	-1.17%	-5.37%	-8.06%
LDB	-5.53%	-2.49%	-1.56%	-10.77%	-15.14%

- Coding gains observed for all metrics
- Highest gains observed in Low delay configurations

Experiments - Test 2

- Ref: LMCS enabled / OLF SEI disabled
- Test: LMCS enabled / OLF SEI enabled (cross-comp mode)
 - OLF uses the fixed mapping function defined for HDR-PQ content
 - In-loop LMCS uses the adaptive tuning algorithm defined for SDR and HLG, which leads to a refinement of the HDR-PQ fixed mapping function used in OLF

			wPSNR		
	DE	PSNRL	Y	U	V
AI	-0.46%	-0.91%	-0.30%	-5.27%	-6.21%
RA	-2.30%	-3.31%	-1.74%	-5.65%	-7.35%
LDB	-5.85%	-3.96%	-2.57%	-9.52%	-14.06%

- Higher coding gains than Test 1 \rightarrow Synergy between OLF and LMCS observed
- Note: gains in luma (PSNRL100, wPSNRY) are, on balance, considered more significant than the corresponding slight loss in chroma

Conclusions

- Out-of-loop mapping can provide improved coding gain over in-loop LMCS for HDR-PQ content
- Additional gains can even be obtained when combining both tools
 - Out-of-loop mapping using static mapping function
 - In-loop LMCS using adaptive refinement mapping function
- Note: tests performed on SDR and HDR-HLG content do not show noticeable impacts on the overall performance
 - in VTM, LMCS coding gain for SDR and HDR-HLG comes from per-content and per-intra period mapping functions adaptation, and per-picture activation/de-activation
 - Temporal variations of the mapping function can jeopardize the temporal prediction when mapping is applied out-of-loop

