
Converting RLBWT to LZ77 in smaller space

Kyushu Institute of Technology
Masaki Shigekuni & Tomohiro I



Background

・ A one-pass algorithm of converting from RLBWT to LZ77 in compressed space has been 
proposed by [Nishimoto & Tabei, 2019]

・ In this study, we propose a two-pass algorithm that reduces its peak memory usage 

・Various lossless compression methods have been proposed to efficiently process 
large-scale data
・Each compression method has its advantages and disadvantages, 

so it would be nice to be able to convert the compression format as needed

RLBWT: Compression method suited for compressed string indexes
LZ77: DicQonary-based compression achieving a high compression rate



SA
posi'on

SA Sorted 
suffixes

1 6 $
2 4 ab$
3 1 abcab$
4 5 b$
5 2 bcab$
6 3 cab$

Suffix array

• The suffix array (SA) of T is a list of text positions sorted in the lexicographic order of
suffixes starting at their positions 

𝑇 =
1 2 3 4 5 6
a b c a b $

Suffixes

abcab$
bcab$

cab$
ab$

b$
$



BWT SA Sorted 
suffixes

b 6 $
c 4 ab$
$ 1 abcab$
a 5 b$
a 2 bcab$
b 3 cab$

Burrows-Wheeler Transform (BWT)

• BWT of a highly repetitive string can be compressed greatly by run-length encoding

“bc$aab” ”bc$a!b”

• Run-length encoded BWT is called RLBWT 

BWT of ”abcab$” RLBWT

• BWT[𝑖] = 𝑇[𝑆𝐴 𝑖 − 1] if SA[𝑖] > 1, otherwise BWT[𝑖] = $ 

Suffixes

abcab$
bcab$

cab$
ab$

b$
$

• BWT is a permutation of characters of T



Lempel-Ziv 77 (LZ77)

• Parse a string greedily into phrases from right-to-left such that each phrase consists of 
the longest substring that appears to the right plus one character

• The ℎ-𝑡ℎ phrase is encoded by a triplet (𝜋!, 𝜆!, c!), representing c!𝑇 𝜋!. . 𝜋! + 𝜆! − 1

𝑇 =

(9, 4, b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
a b b a b b b a b a b a a $

(6, 4, a) (-, 0, $)(-, 0, a)(13, 1, b)
(𝜋", 𝜆", c")(𝜋!, 𝜆!, c!)(𝜋#, 𝜆#, c#)(𝜋$, 𝜆$, c$)(𝜋%, 𝜆%, c%)



SA
position

SA Sorted suffixes

1 6 $
2 4 ab$
3 1 abcab$
4 5 b$
5 2 bcab$
6 3 cab$

b-interval

Backward search
• The maximum interval prefixed with a string w is called w-interval

• The process of computing cw-interval from w-interval for a character c 
is called backward search



SA
position

SA Sorted suffixes

1 6 $
2 4 ab$
3 1 abcab$
4 5 b$
5 2 bcab$
6 3 cab$

b-interval

Backward search
• The maximum interval prefixed with a string w is called w-interval

• Can be conducted in  𝛰 (𝑟) space （𝑟 is the number of the runs of BWT ）

ab-interval

• The process of computing cw-interval from w-interval for a character c 
is called backward search



Compute LZ77 phrases using backward search on RLBWT of 𝑇
• Suppose the next LZ77 phrase ends with 𝑇 𝑗
• Compute 𝑇 𝑖. . 𝑗 −interval in decreasing order of 𝑖 = 𝑗, 𝑗 − 1,…
• If 𝑇 𝑖. . 𝑗 −interval contains a SA-value greater than 𝑖, the phrase will 

continue to grow
• If not, encode the LZ77 phrase

𝑖 𝑗
𝑇

t
✔

𝑇 𝑖. . 𝑗 −interval

✔

✔

✔： SA-value greater than 𝑖

Sorted suffixes of 𝑇In order to compute 𝜋 of LZ77 phrases, we need 
to find a checked position and its SA-value



One-pass Algorithm [Nishimoto & Tabei, 2019]

t✔ １２

𝑇 𝑖. . 𝑗 -interval

✔：SA-value greater than 𝑖

• One-pass algorithm can compute the text position of LZ77 phrase in a single pass 
while keeping track of two SA-positions and their SA-values per run

✔ １１

✔ 7

✔ 9

✔ 1 0

✔

✔ 8

✔ 6



One-pass Algorithm [Nishimoto & Tabei, 2019]

t✔ １２

𝑇 𝑖. . 𝑗 -interval

✔：SA-value greater than 𝑖

• One-pass algorithm can compute the text posiQon of LZ77 phrase in a single pass 
while keeping track of two SA-posiQons and their SA-values per run

✔ １１

✔ 7

✔ 9

✔ 1 0

✔

✔ 8

✔ 6

Spend 2𝑟 lg 𝑛 bits 
𝑛 is the length of 𝑇



Two-pass Algorithm (First pass)

t✔
✔

✔

✔

✔

✔

✔

✔

• In the first pass, we keep track of only SA-posi8ons, which are enough to compute 
𝜆! and 𝑐! of LZ77 phrase (𝜋!, 𝜆!, c!), and also compute the sequence k" , k# , . . . , k$
of SA-posi8ons such that SA[k!] = 𝜋!. 

• By discarding SA-values, we can reduce the space by 2𝑟 lg 𝑛 bits

𝑇 𝑖. . 𝑗 -interval

✔：SA-value greater than 𝑖



• Build the rank data structure for a bit vector 𝑉 marking SA-positions

rank" (𝑉, 𝑖)
𝑉

1

1

1

1

• While visiting SA-positions in the decreasing order of their SA-values, we check if the current 
SA-position is marked, and if so store the current SA-value (text position) at 𝑃[rank" (𝑉, 𝑖)]

Array 𝑃

1

2

3

4

⋮

Two-pass Algorithm (Second pass)

• Finally, we scan the sequence k" , k# , . . . , k$ and output 𝜋! = 𝑃[rank" (𝑉, k!)]

Return the number of 1‘s in 𝑉[1. . i]



Two-pass Algorithm (Second pass)

• 𝜋! = SA[k!] can be computed in the second pass of retrieving
SA-posiQons for suffixes of 𝑇 from right to le_ order

𝑇 =



Two-pass Algorithm (Second pass)

• 𝜋! = SA[k!] can be computed in the second pass of retrieving
SA-posiQons for suffixes of 𝑇 from right to le_ order

• The second pass can be conducted in parallel

𝑇 =

𝑇 =



dataset Alphabet 
size

Length of the 
string

#runs
in the BWT

#LZ77 
phrases

𝒓-index
[KiB]

einstein 139 467,626,544 290,239 75,700 1,084 

kernel 160 257,961,616 2,791,368 708,336 8,124 

para 5 222,953,928 15,636,740 1,886,379  29,191 

chr19x50 6 2,956,259,455 33,139,327 3,798,554 73,499 

We compared one-pass and two-pass algorithms on some highly-compressible texts

• 𝑟-index : RLBWT + Data structures for backward search



dataset One-pass Two-pass Two−pass
One−pass

einstein 4.62 3.60 0.779

kernel 38.05 27.53 0.723

para 191.39 119.91 0.626

chr19x50 463.76 289.95 0.625

Results Peak memory usage [MiB] 23% to 37% less space



dataset one-pass Two-pass Two−pass
One−pass

#threads total first-pass second-pass

einstein 853 1
2
4
8

1207
1041

951
936

855
860
858
872

352
180

93
63

1.414
1.219
1.114
1.097

kernel 566 1
2
4
8

778
665
605
584

548
546
544
544

230
119

60
40

1.373
1.174
1.068
1.032

para 924 1
2
4
8

1302
1118
1039

985

933
930
939
923

368
188

99
62

1.408
1.209
1.124
1.066

chr19x50 6930 1
2
4
8

9916
8533
7532
7353

6965
7044
6773
6855

2950
1488

758
498

1.430
1.231
1.086
1.061

Results Computational time [sec]



dataset one-pass Two-pass Two−pass
One−pass

#threads total first-pass second-pass

einstein 853 1
2
4
8

1207
1041

951
936

855
860
858
872

352
180

93
63

1.414
1.219
1.114
1.097

kernel 566 1
2
4
8

778
665
605
584

548
546
544
544

230
119

60
40

1.373
1.174
1.068
1.032

para 924 1
2
4
8

1302
1118
1039

985

933
930
939
923

368
188

99
62

1.408
1.209
1.124
1.066

chr19x50 6930 1
2
4
8

9916
8533
7532
7353

6965
7044
6773
6855

2950
1488

758
498

1.430
1.231
1.086
1.061

Results Computational time [sec]The overheads of the two-pass algorithm are 
within 10% when we use 8 threads.



Conclusion

• We propose a two-pass algorithm and show by experiments that it works in 
23% to 37% less space with up to 10% increase of computational time when 
we use 8 threads. 

• The reduced space may be used to employ a space-consuming but faster
𝑟-index to improve the throughput if processing 3GB text in 2 hours is too slow.


