Converting RLBWT to LZ77 in smaller space

Kyushu Institute of Technology
Masaki Shigekuni & Tomohiro |

Background

* Various lossless compression methods have been proposed to efficiently process
large-scale data

- Each compression method has its advantages and disadvantages,
so it would be nice to be able to convert the compression format as needed

RLBWT: Compression method suited for compressed string indexes
LZ77: Dictionary-based compression achieving a high compression rate

- A one-pass algorithm of converting from RLBWT to LZ77 in compressed space has been
proposed by [Nishimoto & Tabei, 2019]

- In this study, we propose a two-pass algorithm that reduces its peak memory usage

Suffix array

* The suffix array (SA) of T is a list of text positions sorted in the lexicographic order of
suffixes starting at their positions

Suffixes SA SA Sorted

position suffixes

abcab$ 1 6 S
bcab$s 2 4 abs
cab$ » 3 1 abcab$
ab$s 4 5 bS
bS 5 2 bcab$
S 6 3 cab$

Burrows-Wheeler Transform (BWT)

* BWTis a permutation of characters of T

« BWTI[i] =T[SAli] — 1] if SA[i] > 1, otherwise BWT[i] =S

 BWT of a highly repetitive string can be compressed greatly by run-length encoding
* Run-length encoded BWT is called RLBWT

Suffixes BWT | SA Sorted
suffixes

abcab$ b 6 |S

bcab$ C 4 |ab$
cab$ » S 1 |abcab$s
abs a 5 |bS
bS a 2 | bcab$
S b 3 |cab$
BWT of "abcab$” RLBWT

“bcSagh” — — "bcSa?b”

Lempel-Ziv 77 (LZ77)

* Parse a string greedily into phrases from right-to-left such that each phrase consists of
the longest substring that appears to the right plus one character

* The h-th phrase is encoded by a triplet (15, A5, cp), representing ¢, T [my,.. Ty + A5, — 1]

1234567891011121314
T=abbab‘bb

/ ////

(6, 4, a) (9, 4, b) (13, 1, b) (-,0,a) (-0,9)

(15, As, Cs5) (T4, Ay, Cq) (13, A3, €3) (15, A3, C3) (171, A1, C4)

Backward search

 The maximum interval prefixed with a string w is called w-interval

* The process of computing cw-interval from w-interval for a character c
is called backward search

SA SA Sorted suffixes
position
1 6 S
2 4 ab$s
3 1 abcab$
_ 4 5 bS
b-interval { c 5 beabs
6 3 cab$

Backward search

 The maximum interval prefixed with a string w is called w-interval

* The process of computing cw-interval from w-interval for a character c
is called backward search

SA SA Sorted suffixes
position
1 6 S
2 4 S
—<
3 1 cab$
o I 4 5 bS

-Interval <
5 2 bcab$
6 3 cab$

e Can be conducted in O (r) space (risthe number of the runs of BWT)

Compute LZ77 phrases using backward search on RLBWT of T

 Suppose the next LZ77 phrase ends with T|[j |
* Compute T[i..j]-interval in decreasing orderof i = j,j — 1, ...
« If T|i..j]-interval contains a SA-value greater than i, the phrase will
continue to grow
* |f not, encode the LZ77 phrase
In order to compute of LZ77 phrases, we need sorted suffixes of I
to find a checked position and its SA-value

T|i..j]-interval { v

vV @ SA-value greater than i

One-pass Algorithm [Nishimoto & Tabei, 2019]

* One-pass algorithm can compute the text position of LZ77 phrase in a single pass
while keeping track of two SA-positions and their SA-values per run

< < L

T[i..j]-interval —

<
~

v 9

V @ SA-value greater than i

One-pass Algorithm [Nishimoto & Tabei, 2019]

* One-pass algorithm can compute the text position of LZ77 phrase in a single pass
while keeping track of two SA-positions and their SA-values per run

y Spend 27 Ig n bits
nis the length of T
vV 11
v o
v 10
v
Tli..jl-interval — |, 4
VAR
v o9

V @ SA-value greater than i

Two-pass Algorithm (First pass)

* In the first pass, we keep track of only SA-positions, which are enough to compute
An and ¢y, of LZ77 phrase (3, Ay, ¢i), and also compute the sequence k; , Kk, , ..., Kk,
of SA-positions such that SA[k;] = .

* By discarding SA-values, we can reduce the space by 27 Ig n bits

< < (< (L

T[i..j]-interval —

<

v

V @ SA-value greater than i

Two-pass Algorithm (Second pass)
e Build the rank data structure for a bit vector V marking SA-positions

* While visiting SA-positions in the decreasing order of their SA-values, we check if the current
SA-position is marked, and if so store the current SA-value (text position) at P[ranky (V,)]

* Finally, we scan the sequence kq , k,, ..., k, and output m;, = P[rank; (V, k)]

. rank, (V,1i) Array P

Return the number of 1'sin V[1..1]

v
[HEY

4
N

= =
v v
A W

Two-pass Algorithm (Second pass)

* mp = SA[ky] can be computed in the second pass of retrieving
SA-positions for suffixes of T from right to left order

Two-pass Algorithm (Second pass)

* mp = SA[ky] can be computed in the second pass of retrieving
SA-positions for suffixes of T from right to left order
* The second pass can be conducted in parallel

We compared one-pass and two-pass algorithms on some highly-compressible texts

dataset

einstein

kernel

para

chr19x50

e r-index:

Alphabet Length of the
size string

467,626,544

Hruns

inthe BWT

290,239

#LZ77
phrases

75,700

r-index
[KiB]

160 257,961,616 2,791,368 708,336 3,124
5 222,953,928 15,636,740 1,886,379 29,191
6| 2,956,259,455 33,139,327 3,798,554 73,499

RLBWT + Data structures for backward search

Results Peak memory usage [MiB] [23% to 37% less space

dataset One-pass Two-pass Two-pass
One-pass
einstein

kernel

para

chr19x50

Results Computational time [sec]

one-pass Two-pass Two-pass

: One-pass
#threads total first-pass second-pass

einstein

kernel

chr19x50

0O A~ANNEFRLPICOPEANEFERP|IOOPENE(COPRDNLPE

The overheads of the two-pass algorithm are

Results Computational ti within 10% when we use 8 threads.

one-pass Two-pass Two-pass

: One-pass
#threads total first-pass second-pass

einstein

kernel

chr19x50

0O A~ANNEFRLPICOPEANEFERP|IOOPENE(COPRDNLPE

Conclusion

 We propose a two-pass algorithm and show by experiments that it works in
23% to 37% less space with up to 10% increase of computational time when
we use 8 threads.

* The reduced space may be used to employ a space-consuming but faster
r-index to improve the throughput if processing 3GB text in 2 hours is too slow.

