
Girish Balakrishnan1, Sankardeep Chakraborty2, N S Narayanaswamy1 and Kunihiko Sadakane2

Succinct Data
Structure for Path
Graphs
Data Compression Conference 2022
24 March 2022

1 - Indian Institute of Technology Madras, India

2 - University of Tokyo, Japan

PROBLEM STATEMENT : Design a succinct data structure for path graphs

Basic Definitions

What is a succinct data structure?

• Defined for an object in a set e.g. a graph class

• Based on worst-case entropy to within a lower
order terms

• Each object in the graph class to be stored
using bits

• Common queries like adjacency, neighbourhood
to be solved efficiently.

𝒞
log |𝒞 | + o(log |𝒞 |)

What are Path Graphs?
• Intersection graph of paths on a tree

• Clique tree

• Relation to Class of Interval Graphs and Chordal
Graphs

T

Chordal Graphs Interval Graphs

Heavy Path Decomposition

[ST] D. D. Sleator and R. E. Tarjan, “A data structure for dynamic trees,”Proceedings ofthe Thirteenth Annual ACM Symposium on Theory of
Computing, p. 114–122, 1981.

Motivation

Motivation 1

• THEOREM: Interval graphs with vertices have an
bit succinct representation that supports adjacency and degree
queries in constant time and neighbourhood query for vertex in

 time where is the degree of . [HSSS]

• THEOREM: Chordal graphs with vertices have an bit
succinct representation that supports adjacency query in time
where , degree of a vertex in time and
neighbourhood query in time per neighbour. [MW]

n n log n + O(n)

v
O(d) d v

n n2/4 + o(n)
f(n)

f(n) ∈ ω(1) O(1)
(f(n))2

[HSSS] Succinct Data Structures for Families of Interval Graphs, Acan H., Chakraborty S. and Jo S., Satti S.R., Algorithms and Data Structures. WADS 2019. Lecture Notes in Computer
Science, vol 11646. Springer, 2019.

[MW] Succinct Data Structures for Chordal Graphs, J. Ian Munro and Kaiyu Wu, 29th International Symposium on Algorithms and Computation (ISAAC 2018), Article No. 67, pp,67:1-67:12.

Motivation 2
• The vertex leafage of a chordal graph is the

smallest number such that there exists a tree
model of in which every sub-tree has at most
leaves. [SJ]

• From succinct representation for (path graphs) to
space-efficient representation for .

vl(G) G
k

G k

𝒢2
𝒢k, k ≥ 3

[SJ] The vertex leafage of chordal graphs, S Chaplick and J Stacho, Discrete Appl. Math., vol. 168, pp. 14–25, May 2014.

Our Results

Succinct Data Structure Result
• THEOREM: Path graphs with vertices have an bit

succinct representation that can answer the adjacency query in time,
and the neighbourhood and degree queries for vertex in time
where is the degree of the vertex .

• Is bit representation succinct?

n n log n + o(n log n)
O(log n)

v O(d log2 n)
d v

n log n + o(n log n)

Agenda
• Problem Statement

• Introduction

• Motivation

• Our Results

• Construction

• Queries

• Adjacency Query

• Neighbourhood Query

• Conclusion

Construction

[G] F. Gavril, “A recognition algorithm for the intersection graphs of paths in trees,” 1978

Why heavy path decomposition?
• Heavy sub-paths have contiguous numbering

• Heavy path tree has levels

• Each path can be divided into a sequence of heavy sub-paths and light edges i.e.

(LEMMA 19)

⌈log n⌉
P O(log n) P1, …, Pk

• Perform Heavy Path Decomposition

• Align heavy edge as left most

• Label the nodes of Clique Tree using Preorder
T

Space Complexity
• Three Components of Succinct

Representation

• Clique tree stored using bit [NS]

• Sorted are stored as bit string using
differential encoding taking bits [RSS]

• of paths is stored in a Wavelet tree
using bits [MN]

• Space complexity is
bits

T 2n + o(n)

li,1 ≤ i ≤ n F
2n + o(n)

ri,1 ≤ i ≤ n S
n log n + o(n log n)

n log n + o(n log n) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0
F

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

2 2 2 3 4 5 6 6 7 8
4 5 7 3 4 6 6 8 8 8

li
ri

[NS] Fully functional static and dynamic succinct trees, G. Navarro and K. Sadakan, ACM Trans. Algorithms, vol. 10, no. 3, May 2014.
[RRS] Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets, R. Raman, V. Raman, and S. R. Satti, ACM
Trans. Algorithms,vol. 3, no. 4, pp. 43, 2007.
[MN] Rank and select revisited and extended, V.Makinen and G. Navarro, Theoretical Computer Science, vol.387, no.3, pp. 332-347, 2007.

Input is obtained using Gavril’s Method [G]

Each path is of the form

(T, P1, …, Pn)
Pi ≡ (li, ri),1 ≤ i ≤ n

Wavelet Tree
[1,10]

[1,5] [6,10]

[1,3] [4,5] [6,8] [9,10]

[1,2] [3,3]

[1,1] [2,2]

[4,4] [5,5] [6,7] [8,8] [9,9] [10,10]

2 4 7 1 3 5 6 8

[6,6] [7,7]

9 10

2D points to store

1 2 3 4 5 6 7 8 9 10 valuesli

 valuesri

4 1 5 2 6 7 3 8 9 10
1 2 3 4 5 6 7 8 9 10
0 0 0 0 1 1 0 1 1 1

1 0 1 0 0 0 0 0 1 1

0 0 1 0 0 10 1 0 1

0 1 0 1

Points sorted by values

(bit 1 indicates the point goes right

and 0 indicates left)

ri

Wavelet tree does range search in
 time per item searchedO(log n)

Queries

Adjacency Query

• Adjacency of paths and

• Divide path into at most
heavy sub-paths and light edges,

• For each , check if it overlaps with
 (How to check overlap?)

• Time Complexity

P Q

P O(log n)

P1, …, Pk

Pi

Q

O(log n)

• Let

• is a heavy sub-path of

• There are four places for relative to
and

• For each of these four starting points for
specific conditions allow it to overlap with

Q ≡ (s, t)

Pi ≡ (a, b) P

s a
b

Q

Pi

Technique for Checking Overlap

Conditions for Overlap with Heavy Sub-Path

1. s < a ∧ a ≤ t ≤ d 2. a ≤ s ≤ b

3. b < s ≤ c ∧ lca(s, t) ≤ b 4. c < s ≤ d ∧ lca(s, t) < b

* Consecutive numbering of heavy sub-path helps with these conditions

LEMMA 17 in the paper

Back to Slide 26

Conditions for Overlap with Light Edge

1. s < a ∧ a ≤ t ≤ d 2. s = a ∨ s = b

3. a < s < b ∧ lca(s, t) ≤ a 4. b < s ≤ d ∧ lca(s, t) ≤ b

LEMMA 18 in the paper

Back to Slide 26

Adjacency Query - Summary

• Adjacency of paths and

• Divide path into at most
heavy sub-paths and light edges,

• For each , check if it overlaps with

P8 P3

P8 O(log n)

P1 = ⟨5,6⟩, P2 = (1,5), P3 = (1,7), P4 = ⟨7,8⟩

Pi

P3

P8 = {⟨5,6⟩, (1,5), ⟨1,7⟩, (7,8)}

Heavy sub-path

Light edge

Neighbourhood Query

• Divide path into at most heavy sub-paths and light edges,

• For each enumerate the paths that overlap it

• Enumeration of paths is done by issuing range queries on Wavelet tree

• Range queries are designed based on Conditions used for adjacency

• E.g. will translate into “All paths with in range [1,a-1] and in the
range [a, d]”

• Range queries take time per point identified.

• Each takes time, so total time is .

P O(log n) P1, …, Pk

Pi ≡ (a, b)

s < a ∧ a ≤ t ≤ d li ri

O(log n)

Pi O(d log n) O(d log2 n)

Example Orthogonal Range Search
• Consider condition same as

• Pick internal node of wavelet tree only if there is a path in that range with

• How to check if optimally [M]

• Using Range Minimum and Maximum Query on values of paths [HSSS]

• Let minimum and maximum value in range be and

• If or then ignore the range

s < a ∧ a ≤ t ≤ d [1,a − 1] × [a, d]

[z, z′]
a ≤ ri ≤ d

a ≤ ri ≤ d

ri

[z, z′] rmin rmax

rmin > d rmax < a [z, z′]

[M] S. Muthukrishnan, “Efficient algorithms for document retrieval problems,” Proceedings of ACM-SIAM SODA, 2002, pp. 657–666.
[HSSS] Succinct Data Structures for Families of Interval Graphs, Acan H., Chakraborty S. and Jo S., Satti S.R., Algorithms and Data Structures. WADS 2019. Lecture
Notes in Computer Science, vol 11646. Springer, 2019.

Agenda
• Problem Statement

• Introduction

• Motivation

• Our Results

• Construction

• Queries

• Adjacency Query

• Neighbourhood Query

• Conclusion

Important Ideas
• Heavy Path Decomposition

• Gives the level tree

• Contiguous numbering on heavy paths

• Both queries rely on dividing paths into heavy sub-paths and light edges

• A total ordering on heavy paths and light edges

• Orthogonal Range Search (Wavelet Tree)

• Allows searching using bit succinct data structure

• Augmented method of searching (Range Minimum and Maximum Query) gives optimal search

⌈log n⌉

O(log n)

n log n + o(n log n)

Additional Results
• THEOREM: There exists a space-efficient

representation for path graphs with vertices
using bits that can answer the
adjacency and degree queries in time and
the neighbourhood query for vertex in
time where is the degree of vertex .

• THEOREM: For chordal graphs with vertex
leafage there exists a bit
space-efficient representation that can answer
adjacency query in time.

n
O(n log2 n)

O(1)
v O(d)

d v

k (k − 1)n log n + O(n)

O(k2 log n)

…

interval graphs
O(log n)

Interval graph corresponding to

each level of Heavy Path Tree

Each level takes bits

So total space required is bits

n log n + o(n log n)
O(n log2 n)

Summary

Graph Class
Succinct

Representati
on

Space Complexity Adjacency
Query

Neighbourhood
Query

Degree
Query Reference

Chordal Graphs Y [MW]

Interval Graphs Y [HSSS]

Path Graphs Y

Path Graphs N

n2/4 + o(n) f(n) ∈ ω(1) f(n)2 O(1)

n log n + O(n) O(1) O(1)O(d)

n log n + o(n log n) O(log n) O(d log2 n) O(d log2 n)

O(n log2 n) O(1) O(d) O(1)

