Succinct Data Structure for Path Graphs
 Data Compression Conference 2022
 24 March 2022

Girish Balakrishnan ${ }^{1}$, Sankardeep Chakraborty ${ }^{2}$, N S Narayanaswamy ${ }^{1}$ and Kunihiko Sadakane ${ }^{2}$
1 - Indian Institute of Technology Madras, India
2 - University of Tokyo, Japan

PROBLEM STATEMENT : Design a succinct data structure for path graphs

Basic Definitions

What is a succinct data structure?

- Defined for an object in a set e.g. a graph class
- Based on worst-case entropy to within a lower order terms
- Each object in the graph class \mathscr{C} to be stored using $\log |\mathscr{C}|+o(\log |\mathscr{C}|)$ bits

- Common queries like adjacency, neighbourhood to be solved efficiently.

What are Path Graphs?

- Intersection graph of paths on a tree

Chordal Graphs

Interval Graphs

Heavy Path Decomposition

Heavy Path Decomposition

Motivation

Motivation 1

- THEOREM: Interval graphs with n vertices have an $n \log n+O(n)$ bit succinct representation that supports adjacency and degree queries in constant time and neighbourhood query for vertex v in $O(d)$ time where d is the degree of v. [HSSS]
- THEOREM: Chordal graphs with n vertices have an $n^{2} / 4+o(n)$ bit succinct representation that supports adjacency query in $f(n)$ time where $f(n) \in \omega(1)$, degree of a vertex in $O(1)$ time and neighbourhood query in $(f(n))^{2}$ time per neighbour. [MW]

[^0]
Motivation 2

- The vertex leafage $v l(G)$ of a chordal graph G is the smallest number k such that there exists a tree model of G in which every sub-tree has at most k leaves. [SJ]
- From succinct representation for \mathscr{G}_{2} (path graphs) to space-efficient representation for $\mathscr{G}_{k}, k \geq 3$.

Our Results

Succinct Data Structure Result

- THEOREM: Path graphs with n vertices have an $n \log n+o(n \log n)$ bit succinct representation that can answer the adjacency query in $O(\log n)$ time, and the neighbourhood and degree queries for vertex v in $O\left(d \log ^{2} n\right)$ time where d is the degree of the vertex v.
- Is $n \log n+o(n \log n)$ bit representation succinct?

Agenda

- Problem Statement
- Introduction
- Motivation
- Our Results
- Construction
- Queries
- Adjacency Query
- Neighbourhood Query
- Conclusion

Construction

- Perform Heavy Path Decomposition
- Align heavy edge as left most
- Label the nodes of Clique Tree T using Preorder

Clique Tree T

Why heavy path decomposition?

- Heavy sub-paths have contiguous numbering
- Heavy path tree has $\lceil\log n\rceil$ levels
- Each path P can be divided into a sequence of $O(\log n)$ heavy sub-paths and light edges i.e. P^{1}, \ldots, P^{k} (LEMMA 19)
[G] F. Gavril, "A recognition algorithm for the intersection graphs of paths in trees," 1978

Space Complexity

Input is $\left(T, P_{1}, \ldots, P_{n}\right)$ obtained using Gavril's Method [G] Each path is of the form $P_{i} \equiv\left(l_{i}, r_{i}\right), 1 \leq i \leq n$

- Three Components of Succinct Representation

- Clique tree T stored using $2 n+o(n)$ bit [NS]
- Sorted $l_{i}, 1 \leq i \leq n$ are stored as bit string F using differential encoding taking $2 n+o(n)$ bits [RSS]
- $r_{i}, 1 \leq i \leq n$ of paths is stored in a Wavelet tree S

Clique Tree T

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}	P_{8}	P_{9}	P_{10}
l_{i}	2	2	2	3	4	5	6	6	7	8
r_{i}	4	5	7	3	4	6	6	8	8	8

- Space complexity is $n \log n+o(n \log n)$ bits

F

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$

Wavelet Tree

Wavelet tree does range search in
$O(\log n)$ time per item searched

> | | 4 | 1 | 5 | 2 | 6 | 7 | 3 | 8 | 9 | 10 | Points sorted by r_{i} values |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | (bit 1 indicates the point goes right |
| $[1,10]$ | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | $1 \quad$ and 0 indicates left) | |

123
4
5

r_{i} values
l_{i} values
2D points to store

Queries

Adjacency Query

- Adjacency of paths P and Q
- Divide path P into at most $O(\log n)$ heavy sub-paths and light edges, P^{1}, \ldots, P^{k}
- For each P^{i}, check if it overlaps with Q (How to check overlap?)
- Time Complexity $O(\log n)$

Technique for Checking Overlap

- Let $Q \equiv(s, t)$
- $P^{i} \equiv(a, b)$ is a heavy sub-path of P
- There are four places for s relative to a and b
- For each of these four starting points for Q specific conditions allow it to overlap with P^{i}

4. s can be between c and d

Conditions for Overlap with Heavy Sub-Path

3. $b<s \leq c \wedge \operatorname{lca}(s, t) \leq b$

4. $c<s \leq d \wedge \operatorname{lca}(s, t)<b$

Conditions for Overlap with Light Edge

1. $s<a \wedge a \leq t \leq d$

2. $a<s<b \wedge \operatorname{lca}(s, t) \leq a$

3. $s=a \vee s=b$

4. $b<s \leq d \wedge \operatorname{lca}(s, t) \leq b$

Adjacency Query - Summary

$$
P_{8}=\{\langle 5,6\rangle,(1,5),\langle 1,7\rangle,(7,8)\}
$$

- Adjacency of paths P_{8} and P_{3}
- Divide path P_{8} into at most $O(\log n)$ heavy sub-paths and light edges, $P^{1}=\langle 5,6\rangle, P^{2}=(1,5), P^{3}=(1,7), P^{4}=\langle 7,8\rangle$
- For each P^{i}, check if it overlaps with P_{3}

Neighbourhood Query

- Divide path P into at most $O(\log n)$ heavy sub-paths and light edges, P^{1}, \ldots, P^{k}
- For each $P^{i} \equiv(a, b)$ enumerate the paths that overlap it
- Enumeration of paths is done by issuing range queries on Wavelet tree
- Range queries are designed based on Conditions used for adjacency
- E.g. $s<a \wedge a \leq t \leq d$ will translate into "All paths with l_{i} in range [1, a-1] and r_{i} in the range [a, d]"
- Range queries take $O(\log n)$ time per point identified.
- Each P^{i} takes $O(d \log n)$ time, so total time is $O\left(d \log ^{2} n\right)$.

Example Orthogonal Range Search

- Consider condition $s<a \wedge a \leq t \leq d$ same as [1, $a-1] \times[a, d]$
- Pick internal node $\left[z, z^{\prime}\right]$ of wavelet tree only if there is a path in that range with $a \leq r_{i} \leq d$
- How to check if $a \leq r_{i} \leq d$ optimally [M]
- Using Range Minimum and Maximum Query on r_{i} values of paths [HSSS]
- Let minimum and maximum value in range $\left[z, z^{\prime}\right]$ be $r_{\min }$ and $r_{\text {max }}$
- If $r_{\text {min }}>d$ or $r_{\max }<a$ then ignore the range $\left[z, z^{\prime}\right]$

Agenda

- Problem Statement
- Introduction
- Motivation
- Our Results
- Construction
- Queries
- Adjacency Query
- Neighbourhood Query
- Conclusion

Important Ideas

- Heavy Path Decomposition
- Gives the $\lceil\log n\rceil$ level tree
- Contiguous numbering on heavy paths
- Both queries rely on dividing paths into $O(\log n)$ heavy sub-paths and light edges
- A total ordering on heavy paths and light edges
- Orthogonal Range Search (Wavelet Tree)
- Allows searching using $n \log n+o(n \log n)$ bit succinct data structure
- Augmented method of searching (Range Minimum and Maximum Query) gives optimal search

Additional Results

- THEOREM: There exists a space-efficient representation for path graphs with n vertices using $O\left(n \log ^{2} n\right)$ bits that can answer the adjacency and degree queries in $O(1)$ time and the neighbourhood query for vertex v in $O(d)$ time where d is the degree of vertex v.
- THEOREM: For chordal graphs with vertex leafage k there exists a $(k-1) n \log n+O(n)$ bit space-efficient representation that can answer adjacency query in $O\left(k^{2} \log n\right)$ time.

Each level takes $n \log n+o(n \log n)$ bits
So total space required is $O\left(n \log ^{2} n\right)$ bits

Summary

Graph Class	Succinct Representati on	Space Complexity	Adjacency Query	Neighbourhood Query	Degree Query	Reference
Chordal Graphs	Y	$n^{2} / 4+o(n)$	$f(n) \in \omega(1)$	$f(n)^{2}$	$O(1)$	$[\mathrm{MW}]$
Interval Graphs	Y	$n \log n+O(n)$	$O(1)$	$O(d)$	$O(1)$	$[\mathrm{HSSS}]$
Path Graphs	Y	$n \log n+o(n \log n)$	$O(\log n)$	$O\left(d \log ^{2} n\right)$	$O\left(d \log ^{2} n\right)$	
Path Graphs	N	$O\left(n \log ^{2} n\right)$	$O(1)$	$O(d)$	$O(1)$	

[^0]: [HSSS] Succinct Data Structures for Families of Interval Graphs, Acan H., Chakraborty S. and Jo S., Satti S.R., Algorithms and Data Structures. WADS 2019. Lecture Notes in Computer Science, vol 11646. Springer, 2019.
 [MW] Succinct Data Structures for Chordal Graphs, J. Ian Munro and Kaiyu Wu, 29th International Symposium on Algorithms and Computation (ISAAC 2018), Article No. 67, pp,67:1-67:12.

