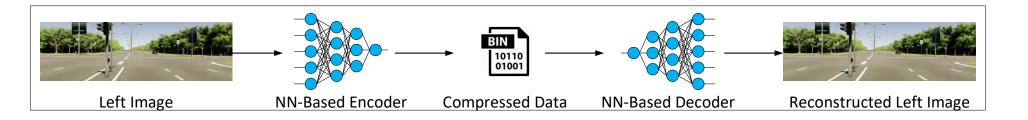
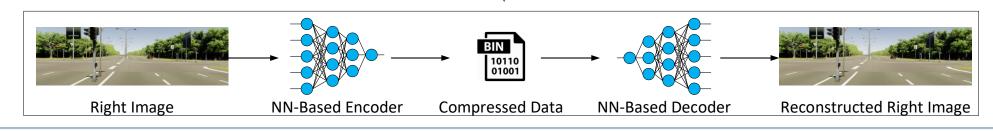


Fraunhofer Institute for Integrated Circuits IIS

RNNSC: Recurrent Neural Network-Based Stereo Compression Using Image and State Warping M. Shahzeb Khan Gul, Hamid Suleman, Michel Baetz, Joachim Keinert

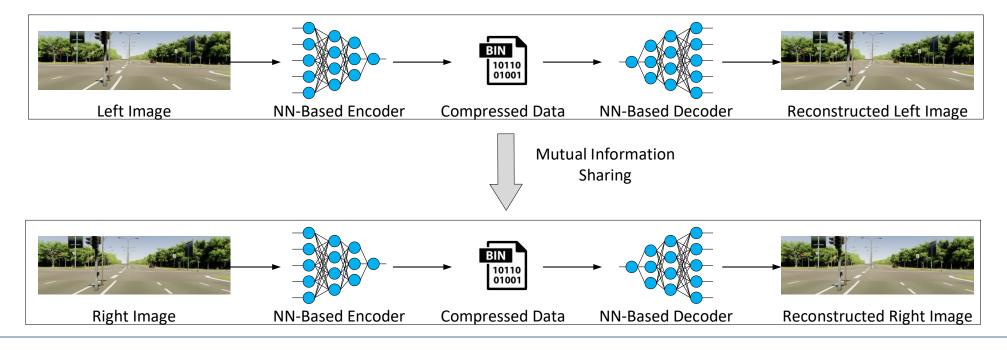

Data Compression Conference 2022



Introduction

Neural Network-Based Single Image Compression

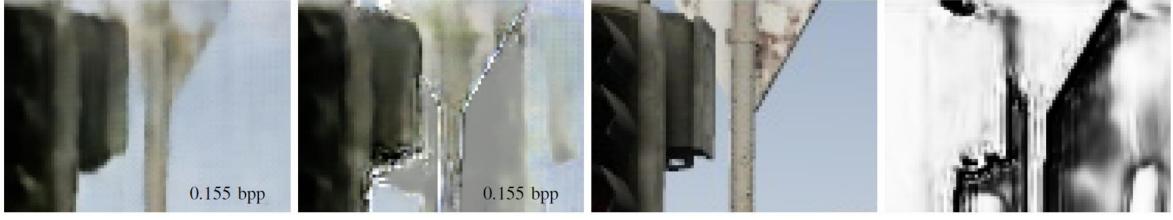
- Stereo image pair consists of overlapping regions visible to both cameras
- Current neural network-based single-image compression methods cannot be directly used for stereo images
- Individual compression of each stereo image does not benefit from the already compressed information



Proposed Method

State and Image Sharing

- Proposed a recurrent neural network-based stereo compression method
- Proposed to share the states of the recurrent units of the network to eliminate the inter-view redundancy
- Utilize a convolution neural network to predict occlusion maps to remove wrong information from occluded areas



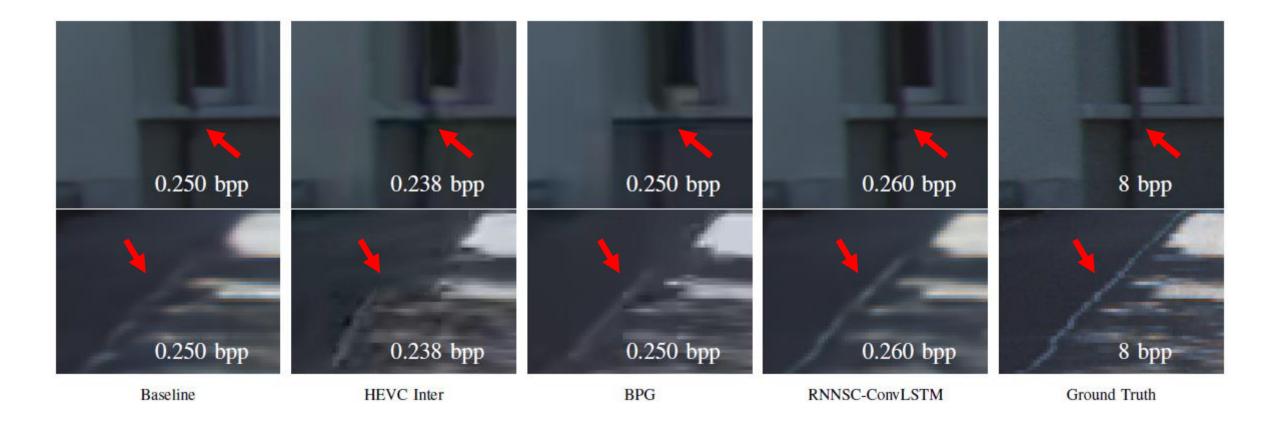
Proposed Method Z⁻¹ Block Diagram and Algorithm Flow Reconstructed Left Image (H/16)x(W/ **Binary code** Left Image Left Decoder Left Encoder Left 16)x512 (bits) (LE) (LD) Li (H/16)x(W/ Binarizer HxWx3 States **States Compress left image** 16)x32 HxWx3 **Final reconstructed** Left Image Compute and compress the right image Λ Lk disparity Occlusion Warping Warping Warp the left image network states and DetectionNetwork final reconstructed left image \mathbf{D}^{R} Compressed **Estimate occlusion map** ٠ **Right Disparity** Reconstructed **Right Image** Initialize the right image network with Right Image **Binary code** States States HxWx3 Right (bits) Λ warped states R **Right Encoder Right Decoder R**_i (H/16)x(W/ Binarizer (H/16)x(W/ (RD) (RE) 16)x512 16)x32 HxWx3 **Compress right image** Z⁻¹

w/ Occlusion Map

w/o Occlusion Map

Ground Truth

Occlusion Map



Methods	Bit rate savings %			
	VKitti2		Kitti2012	
	PSNR (dB)	MS-SSIM (dB)	PSNR (dB)	MS-SSIM (dB)
RNNSC	15.84	15.00	12.24	11.72
HEVC Inter	3.11	62.09	-11.52	43.17
BPG	-5.55	60.73	-6.22	50.48
JPEG2000	-39.81	41.24	-46.96	34.16

Result Visual Comparison Kitti2012

Conclusion

- Proposed a RNN-based stereo image compression method
- Ablation studies shows the effectiveness of the state-sharing module
- Outperforms all traditional codecs in terms of MS-SSIM for both synthetic and real world dataset
- Saves almost 10-30% of the bit rate as compared to the baseline RNN-based single image compression methods

Fraunhofer Institute for Integrated Circuits IIS

000

Thank you!