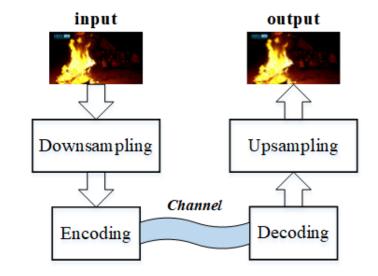


A Smart Reference Picture Resampling Approach for VVC

Tianliang Fu (PKU), Kai Zhang, Yue Li, Li Zhang (ByteDance) Shanshe Wang, Siwei Ma (PKU)

- □ Background
- □ Proposed method
- □ Simulation results
- □ Conclusion


Background-Reference Picture Resampling

□ Resampling-based coding

Down-sampling before compression and up-sampling the decoded video for reconstruction

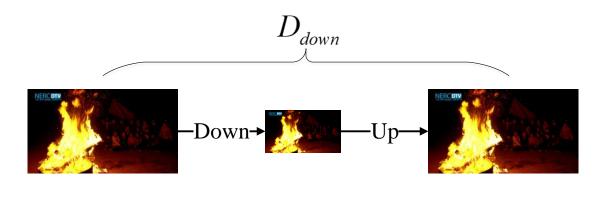
□ Use case

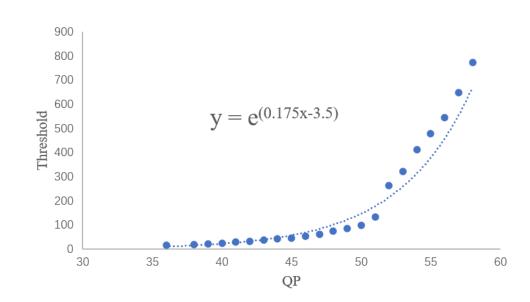
- Compressing high-resolution videos at low bitrate
- Bitrate adaption in video telephony and conferencing
- The frequent active speaker changes in the multi-party video conferencing
- Fast start for streaming application
- Adaptive stream switching in streaming application

Background-RPR in VVC

□ Before VVC

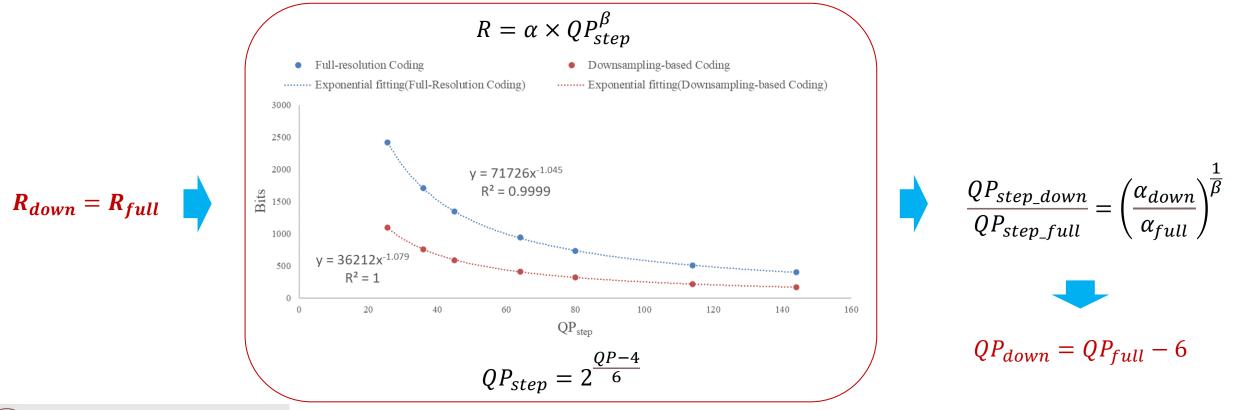
- Inserting an IDR or IRAP with a new resolution setting
- Consuming more bits and time than an inter-coded picture
- □ RPR in VVC
 - Support the spatial resolution change without inserting an IDR or IRAP picture
 - The height and width of the current picture are signaled directly in PPS
 - The scaling ratios for horizontal and vertical directions are both arbitrary
- □ RPR as a coding tool
 - Multiple-pass encoded to enable a manual selection between low-resolution coding and full-resolution coding
 - A much higher encoding time and is not desirable in low-delay scenarios



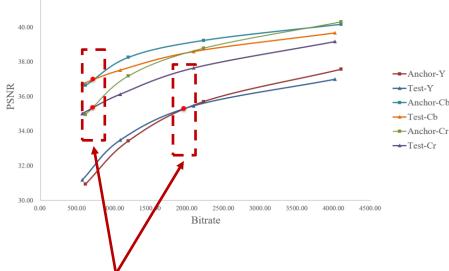

Smart RPR

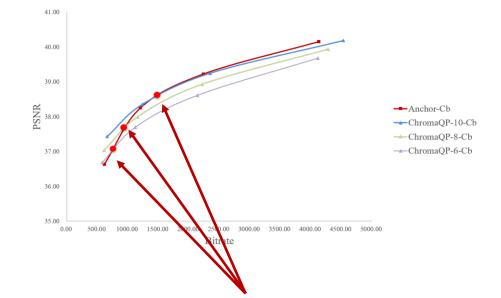
□ Adaptive decision on coding resolution

 $D_{down} < D_{thre}$ Downsampling-based coding


$$D_{thre} = e^{a * QP - b}$$

Smart RPR


Coding parameters setting for Luma component Align rate


Smart RPR

□ Coding parameters setting for Chroma component

The critical bitrate of chroma components is lower than that of the luma component

when the chroma QP offset increases from 6 to 10, the critical bitrate gradually gets larger

 $QP_{chroma_down} = QP_{chroma_full} - 9$

Framework

Simulation results

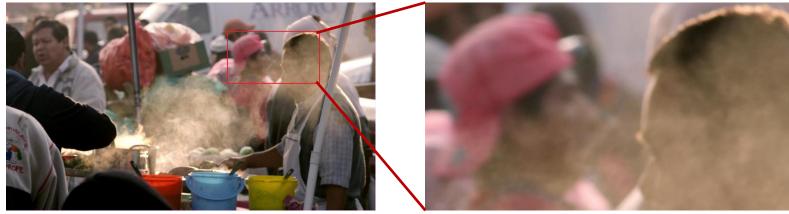
Experiment configurationsPlatform: VTM-12.0

Sequences: 4K

Table 1: The basic parameters of the test sequences

Class	Sequence	Width	Height	FrameRate	BitDepth
A1	Tango2	3840	2160	60	10
	FoodMarket4	3840	2160	60	10
	Campfire	3840	2160	30	10
A2	CatRobot	3840	2160	60	10
	Day light Road 2	3840	2160	60	10
	ParkRunning3	3840	2160	50	10
Added	Mountain Bay 2	3840	2160	30	10
	OberbaumSpree	3840	2160	60	10
	RaceNight	3840	2160	50	10
	Tiergarten Parkway	3840	2160	60	10

QPs: {32, 37, 42, 47}


Table 2: Performance of the proposed method in LDB

Sequence	Y-PSNR	U-PSNR	V-PSNR	EncT	DecT	$Delta_{Bitrate}$
Tango 2	-7.40%	-16.94%	-22.26%	72%	48%	5.0%
FoodMarket4	-8.36%	-18.39%	-23.18%	73%	40%	2.0%
Campfire	2.37%	-0.58%	-1.46%	103%	84%	4.7%
CatRobot	-1.51%	0.46%	-2.24%	82%	67%	0.9%
Day lightRoad 2	-0.99%	-4.25%	-5.08%	102%	84%	1.5%
ParkRunning3	-2.37%	32.46%	19.49%	79%	65%	4.2%
Mountain Bay 2	-2.75%	-4.11%	-29.77%	69%	52%	6.0%
OberbaumSpree	-3.83%	-27.29%	-29.11%	65%	48%	5.6%
RaceNight	-2.32%	-11.28%	-12.13%	84%	70%	0.5%
Tiergarten Parkway	-0.08%	-2.93%	-2.44%	100%	91%	0.7%
Average	-2.72%	-5.29%	-10.82%	83%	65%	3.1%

Simulation results

□ Subjective quality

original

VTM12.0 + downsampling-based coding

VTM12.0 anchor

Conclusion

- □ We present a smart-RPR approach that enjoys improved compression efficiency and lower encoding/decoding complexity.
 - A frame is first down- and up-sampled without encoding and the resampling distortion is calculated by comparing the up-sampled frame with the original frame
 - The RPR for this frame will be enabled if the resampling distortion is less than a distortion threshold conditioning on QP.
 - The luma and chroma QPs of the downsampled frame are adjusted to avoid excessive bitrate fluctuation and to achieve a better coding performance.
- □ Smart RPR achieves about 2.72%, 5.29%, and 10.82% BD-rate savings on average for Y, Cb, and Cr components respectively
- □ Both encoding and decoding time savings are observed and the bitrate fluctuation is minor, i.e 3.1% on average

Thanks for your attention!

