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BACKGROUND 1
Target of Our Study and Challenges

Gastric cancer has remained a burdensome disease in East Asian countries.

B Gastric cancer in East Asian Prevalence of stomach cancer by region (2018) [1]
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-DCNN based gastritis CAD (Computer-aided diagnosis) systems are important.
- Gastric image sharing between different clinical facilities are needed.

[1] F. Bray et al., “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries,” CA Cancer J Clin, vol. 68, no. 6, pp. 394-424, 2018. w527 ) HOKKAIDO UNIVERSITY




BACKGROUND 2
Target of Our Study and Challenges

The sharing of medical images is a primary method for building

high-accuracy DCNN based CAD systems [2].
B Medical Image Sharing
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Medical image
B Problems

-The large size of medical image datasets make the sharing inefficient.
-The medical images often include the private information of patients.

Practical methods are needed to solve these problems in medical image sharing.

[2] P. Rajpurkar et al., "Mura: Large dataset for abnormality detection in musculoskeletal radiographs," in
Proc. Medical Imaging with Deep Learning, 2018.
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BACKGROUND 3
Solution Strategy

B Dataset Distillation [3]

MNIST [4]
10 images
93.8% accuracy

B Dataset reduction L
- Can distill the valid information based on

gradient descent.

CIFAR10 [5]
100 images
54.0% accuracy

B Anonymity
- Can generate images with different data
distributions.

Dataset Distillation can generate distilled anonymous images.

- Large size of the medical dataset. — Dataset distillation may overcome these
- Including the private information. problems.

[3] T. Wang et al., “Dataset distillation,” arXiv preprint arXiv:1811.10959, 2018.
[4] Y. Lecun et al., Proc. of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. 537 ) HOKKAIDO UNIVERSITY

[5] A. Krizhevsky et al., “Learning multiple layers of features from tiny images ,” Citeseer, 2009.



METHOD 4
Overview of the Proposed Method

[ A| m Of our St u d y Gastric X-ray images Gastric patch images DCNN model
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Distilled images

B Proposed method

Soft-label anonymous gastric Novelty Distilling information of different patches.
X-ray image distillation. | %

Prevent the overfitting of distilling process.

We can generate anonymous soft-label gastric images with the proposed method.
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METHOD 5
Details of Proposed Method|Step 1

B Characteristics of gastric X-ray images

- High resolution (ex. 2,048 X 2,048).

- Differences of gastritis and non-gastritis are described in local regions.

B Patch-based gastric X-ray image labeling
| B

Irrelevant patch (1)
Negative patch (N)
Positive patch (P)

Non-gastritis image Gastritis Image (Positive)
(Negative)

Divided patches are used for soft-label patch image distillation of the next step.




Details of Proposed Method|Steps

METHOD 6
2&3

B Soft-label gastric patch image distillation

Gastric patch images DCNN model
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e B e Relearning
Distilled images

- Compute updated weights
with the distilled data.
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- Evaluate the objective function
with the derived new weights.
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M Full gastric X-ray image classification

- Evaluate the full gastric X-ray image
classification performance.

test
v ={

I :loss function  « : learning rate

o : optimized learning rate

. Num (P)
1 if Num(P)+Num(N)
0 otherwise
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EXPERIMENT 7
Dataset and Evaluation Methods

M Dataset

- X-ray images. gray-scale, 2,048x2,048 pixels
- Number of images: 815 images [training data 200, test data 615]
- Patch size, sliding interval: 299X%299 pixels, 50 pixels

« Ground Truth: results of diagnostic report

m Evaluation methods

Sensitivity (Sen)= TPE% Specificity (Spe)= %
: _ 2xsensitivityxspecificity
Harmonic mean (HM)= sensitivity +specificity

TP: true positive TN: true negative FP: false positive FN: false negative




EXPERIMENT 8
Experimental Conditions

W Experimental settings

- Model, framework: ResNet18, PyTorch

- Loss function: cross-entropy loss

- The number of distilled images, distill epochs and steps: 3 (I, N, P), 3, 3
- Soft-label initial values: one-hot values of the original labels

- Distilled images: the best images in the training phase

- Ex.1: comparison with the ordinary DCNN

- Ex.2: comparison with the hard-label distillation

B Comparative methods

- CM1: three ordinary ResNet18 models (3,000, 6,000, 9,000)
- CM2: hard-label distillation




EXPERIMENT 9
Classification Performance Evaluation

B Results of Ex.1 (Compare with the ordinary DCNN)

Proposed method (3) 0.886 0.869 0.877
ResNet18 (9000) 0.814 0.832 0.823
ResNet18 (6000) 0.907 0.760 0.827
ResNet18 (3000) 0.914 0.669 0.773

B Results of Ex.2 (Compare with the hard-label distillation)

Proposed 0.886 0.869 0.877
method (3)
Hard-label 0.829 0.884 0.856

Distillation (3)

Our method realizes high performance with only three distilled images.
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EXPERIMENT 10
Anonymization Effect Evaluation

m Distilled hard-label images

Dataset: Gastritis, Arch: ResNet18, Step: 9, LR: 0.0618

M Distilled soft-label images
Dataset: Gastritis, Arch: ResNet18, Step: 9, LR: 0.0073

I: 76.1% I: 11.2% I 11.2%
N: 12.5% N: 77.3% N: 13.8%

P: 11.4% P: 11.5% P: 75.0%

The distillation methods can completely anonymize the gastric X-ray images.




CONCLUSION 11
Conclusion and Future Works

Hm Contributions

Effectiveness

- Achievement of a high performance with only three distilled images.
- Completely anonymized the medical images.

Significance

- Improve the efficiency and security of the medical data sharing.

W Future works

- Transfer learning with the distilled images.
-Improve the efficiency of the distillation algorithm.
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If you have any guestions, please contact me.

Email: guang@Imd.ist.hokudai.ac.jp
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