Orthonormal Matrix Codebook Design for Adaptive Transform Coding

Data Compression Conference March 22, 2022

Rashmi Boragolla, Pradeepa Yahampath Department of Electrical and Computer Engineering

Contents

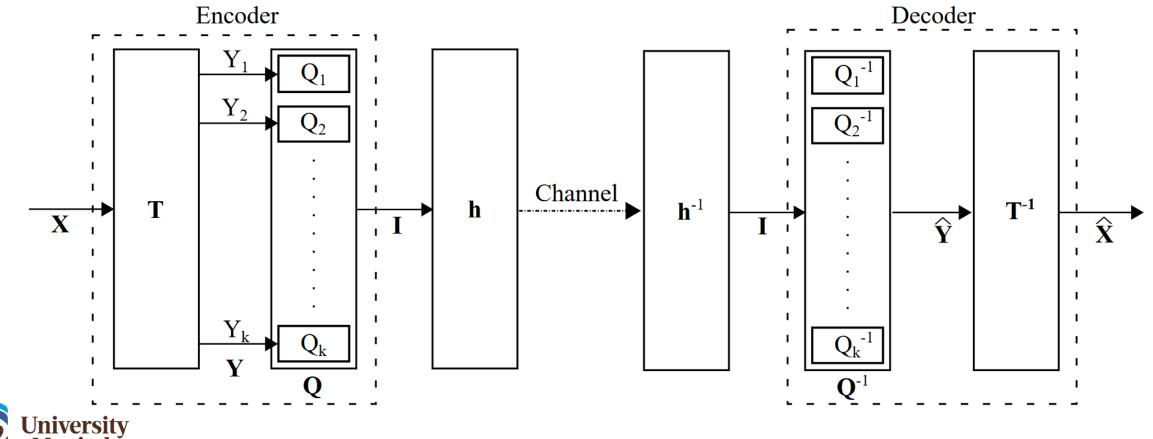
- Background and Motivation
- Transform Coding Framework
- Problem Statement
- Transform Matrix Codebook Optimization
- Mean Square Error Modeling
- Algorithm for Transform Codebook Design
- Experimental Results
- Discussion
- Conclusions

Background and Motivation

- Transform coding : Linearly transform random vectors to obtain transform coefficients that would be scaler quantized and entropy coded to achieve compression.
- The optimal transform for coding stationary Gaussian sources based on the mean squared error (MSE) is the Karhunen-Lo eve transform (KLT).
- In real-world applications, the source data is highly non-stationary, however the tendency has been to use generic fixed-transforms such as DCT.
- Research on adaptive transform coding has shown to yield significant gains over DCT.
- Adaptive transform coding : Linear transform is adapted to signal statistics.
- Previous work on adaptive transform coding
 - specialized to signals with certain characteristics, such as images containing various directional properties and video residuals produced by intra-prediction or motion-compensation
 - more general transforms are designed using a sparsity constraint as a surrogate for a rate constraint
 - do not consider the effect of quantization errors due to finite rate compression.

Transform Coding Framework

• $X \in \mathbb{R}^k$ is a stationary random vector, $T \in \mathbb{R}^{k \times k}$ is an orthonormal matrix, $Y \in \mathbb{R}^k$ is the transform coefficients, Q is the scalar quantizer with quantization step sizes $\Delta = [\Delta_1, ..., \Delta_k]^T$, h is the entropy coder, $\widehat{Y} \in \mathbb{R}^k$ is the quantized version of Y and \widehat{X} is the reconstructed source vector.



Transform Coding Error

- Assume that each transform coefficient is zero mean and that the quantization MSE is a function of the quantizer's input variance $\sigma_{Y_i}^2 = E[Y_i^2]$.
- The quantization MSE of the coefficient Y_i

$$\theta(\sigma_{Y_i}^2, \Delta_i) = E(Y_i - \hat{Y}_i)^2$$

• MSE of transform coding **X** is given by

$$\Theta(\boldsymbol{T}, \boldsymbol{C}_{\boldsymbol{X}}) = E(\boldsymbol{X} - \widehat{\boldsymbol{X}})^2 = \sum_{i=1}^k \theta(\sigma_{Y_i}^2, \Delta_i)$$

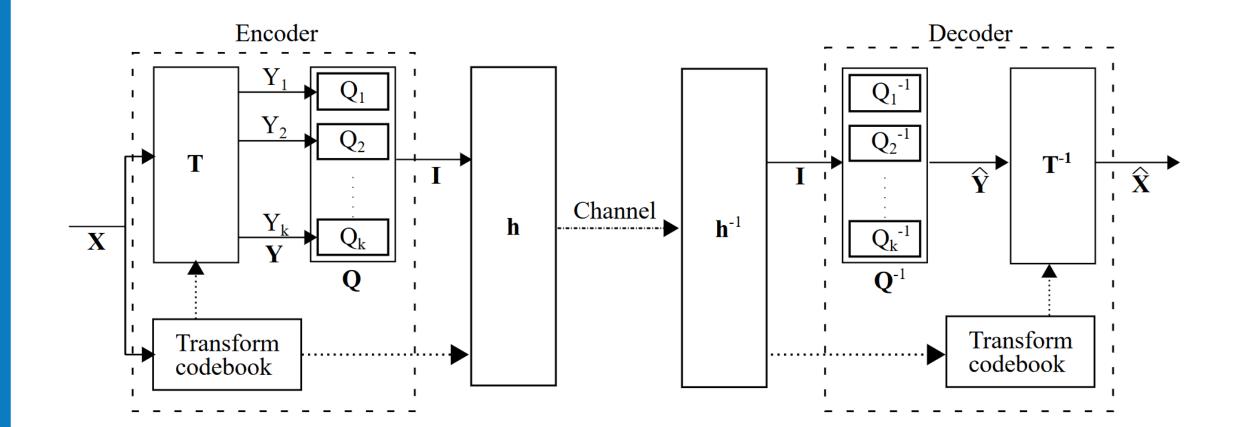
where C_X is the covariance matrix of X.

• Optimal transform

$$T^* = \underset{T}{\operatorname{arg min}} \Theta(T, C_X)$$

such that $T^T T = I_k$, where I_k is the identity matrix.

Adaptive Transform Coding Framework



Problem Statement

- Let
 - $B \in S_B$ be a locally stationary block of vectors in a non-stationary process, where S_B is the set of all possible blocks. C_B be the covariance matrix for $X \in B$, and S_C be the ensemble of covariance matrices
- If **X** is a Gaussian vector, then the optimal transform for stationary block *B* is the KLT of C_B .
 - The main difficulty is KLT undo the advantage gained by requiring an additional bit-rate overhead to encode data-dependent transform matrices.
- Adaptive transform coding : Use a codebook of orthonormal transform matrices $\mathcal{T} = \{\tilde{T}_1, \dots, \tilde{T}_N\}$ and select the optimal transform matrix for B as

$$T^* = \underset{T \in \mathcal{T}}{\operatorname{arg min}} \frac{1}{|B|} \sum_{X \in B} \|X - \widehat{X}\|^2 = \underset{T \in \mathcal{T}}{\operatorname{arg min}} \Theta(T, C_B)$$

where \hat{X} is the reconstructed version of source vector X using the transform T and |B| is the number of vectors in B.

Transform Matrix Codebook Optimization

- Model the non-stationary process by a block-wise stationary vector process and encode each stationary block of vectors using a single transform optimized to local statistics.
- Optimal partitioning of \mathbb{S}_B , $\mathbf{\Omega}^* = \{\Omega_1^*, \dots, \Omega_N^*\}$ for a fixed \mathcal{T} $\Omega_i^* = \{ \mathbf{C}_B \in \mathbb{S}_C : \Theta(\widetilde{\mathbf{T}}_i, \mathbf{C}_B) < \Theta(\widetilde{\mathbf{T}}_j, \mathbf{C}_B) \forall i \neq j \}$ (1)
- Optimal codebook \mathcal{T}^* for fixed partition $\Omega = \{\Omega_1, \dots, \Omega_N\}$ of \mathbb{S}_B $T^* = \underset{T \in \mathbb{R}^{k \times k}}{\operatorname{arg min}} \mathbb{E}[\Theta(T, C_B) | C_B \in \mathbb{S}_C], \quad subject \ to \quad T^T T = I_k \quad (2)$
- T^* should be orthonormal and hence the solution space is the set of all $k \times k$ orthogonal matrices O(k).
- Rather than solving a constrained minimization problem in (2) on the Euclidian space $\mathbb{R}^{k \times k}$, we use low-complexity, modified steepest descent algorithm on O(k) [1] to solve (2) as an unconstrained minimization problem on O(k).
- This algorithm requires that the objective function in (2) be differentiable
- We propose two alternatives

Mean Square Error Modeling - Models for $\Theta(T, C_B)$

1. High-rate Gaussian model

- Given a target rate R_0 bits/vector, the minimum MSE of transform coding a Gaussian vector

$$\Theta(\boldsymbol{T}, \boldsymbol{C}_B) = \frac{k\pi e}{6} \left(\prod_{i=1}^k \sigma_{Y_i}^2 \right)^{\frac{1}{k}} 2^{-\frac{2R_o}{k}}$$

2. Laplacian model

- MSE of quantizing a mean-zero Laplace variable with variance σ^2 using a uniform quantizer with a dead zone $(-\frac{z}{2}, \frac{z}{2})$, quantization step-size Δ and $b = \sqrt{\sigma^2/2}$

$$\Theta(\sigma^2, \Delta, z) = 2b^2 - e^{z/2b} \left(\frac{z^2 - \Delta^2}{4} + zb + \Delta b \frac{(e^{\Delta/b} + 1)}{(e^{\Delta/b} - 1)} \right)$$

- Therefore

$$\Theta(\boldsymbol{T}, \boldsymbol{C}_B) = \sum_{i=1}^k \theta(\sigma_{Y_i}^2, \Delta_i, z_i)$$

Algorithm for Transform Codebook Design

Input	•	: A training set of covariance matrices \tilde{S}					
Parameters	A tolerance parameter $\varepsilon > 0$ Maximum allowed iterations <i>M</i>						
Initialize	:	An initial codebook of orthonormal matrices $\mathcal{T}^{(0)} = \{\tilde{T}_1^{(0)}, \dots, \tilde{T}_N^{(0)}\}$ Iteration index $t \leftarrow 1$					
while		$\frac{\overline{\Theta}^{(t-1)} - \overline{\Theta}^{(t)}}{\overline{\Theta}^{(t-1)}} \geq \mathcal{E} \text{ or } t < M$					
		Step 1: Given $\mathcal{T}^{(t-1)}$ partition \tilde{S} into N subsets $\{\Omega_1^{(t)}, \dots, \Omega_N^{(t)}\}$					
		Step 2: Given $\{\Omega_1^{(t)}, \dots, \Omega_N^{(t)}\}$ find the optimal transform codebook $\mathcal{T}^{(t)}$					
		Step 3: Estimate by sample averaging $\overline{\Theta}^{(t)}$					
end							

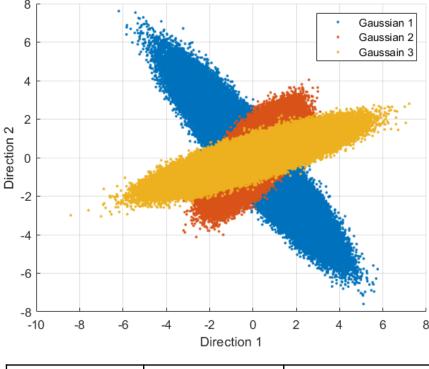
A Toy Example

• Optimize a single transform matrix for 2-D vectors drawn from a Gaussian mixture with 3 mean-zero components whose covariance matrices are

$$C_{1} \begin{bmatrix} 1.54 & -1.84 \\ -1.84 & 2.62 \end{bmatrix}, C_{2} = \begin{bmatrix} 0.46 & 0.40 \\ 0.40 & 0.70 \end{bmatrix},$$
$$C_{3} = \begin{bmatrix} 2.22 & 0.77 \\ 0.77 & 0.38 \end{bmatrix}$$

• Our design algorithm finds a transform matrix noticeably better than the KLT and DCT.

[High-rate and Laplace respectively refer to transforms optimized using the high-rate Gaussian model and the Laplacian model dataset.]



	Transform	SNR (dB)	Entropy (bits/sample)			
Ì	KLT	3.21	0.71			
	DCT	3.69	0.63 0.59			
	High-Rate	4.0				
	Laplace	4.0	0.59			

Preliminary Results for Motion-compensated (MC) Video Residuals

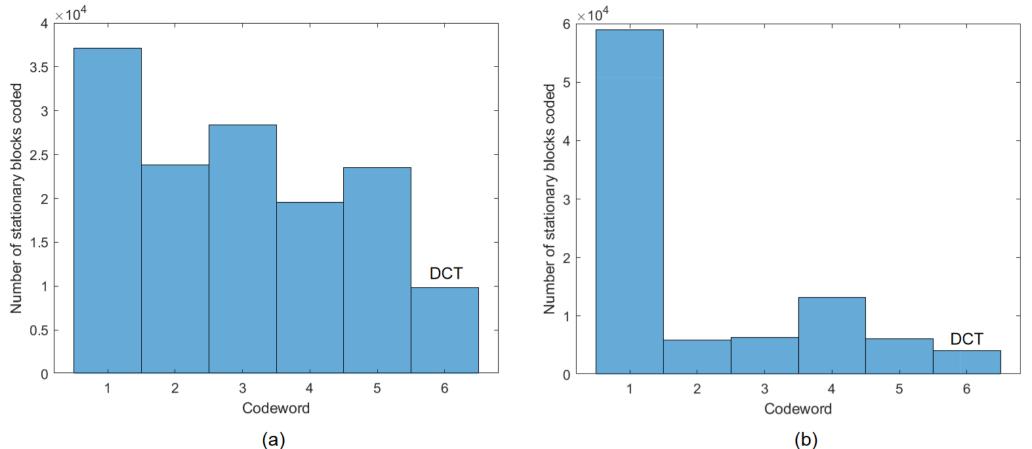
- Considered a set of 9 standard CIF resolution 30 fps gray-scale video sequences (Bus, Coastguard, Crew, Football, Foreman, Mobile, Soccer, Stefan, Tennis), to generate MC residuals from HM test model.
- Transform coding of 4×4 pixel blocks have been considered to keep the computational complexity low as we are dealing with non-separable transforms.
- To estimated a single covariance matrix, residual frames are divided into 16×16 non-overlapping blocks and a set of time-aligned spatially stationary blocks in 8 adjacent frames have been considered as a spatio-temporal stationary block.
- Various codebook designs were tested using a separate set of 7 video sequences.
- Since the DCT will be good for some stationary blocks, we included the DCT as an additional codeword, after designing a codebook.

BD-PSNR and **BD-Rate** Gains

	Codebook size N											
Sequence	3				6			9				
Sequence	BD-PSNR (dB)		BD-Rate (%)		BD-PSNR (dB)		BD-Rate $(\%)$		BD-PSNR (dB)		BD-Rate (%)	
	High-Rate	Laplace	High-Rate	Laplace	High-Rate	Laplace	High-Rate	Laplace	High-Rate	Laplace	High-Rate	Laplace
Akiyo	0.096	0.148	-2.86	-5.10	0.122	0.185	-3.60	-5.39	0.135	0.192	-3.94	-5.43
City	0.096	0.233	-1.44	-3.80	0.180	0.332	-2.75	-5.14	0.180	0.343	-2.74	-5.35
Flower	-0.009	0.152	0.15	-1.44	0.048	0.221	-0.41	-2.04	0.048	0.211	-0.39	-1.88
Hall Monitor	0.137	0.250	-3.44	-6.49	0.187	0.313	-4.46	-7.46	0.185	0.323	-4.46	-7.65
Ice	0.157	0.393	-2.91	-7.31	0.180	0.467	-3.27	-8.27	0.179	0.465	-3.29	-8.28
Mother daughter	0.224	0.290	-5.83	-8.66	0.259	0.367	-6.61	-9.08	0.264	0.379	-6.74	-9.58
Waterfall	0.152	0.239	-1.86	-3.53	0.281	0.356	-4.10	-5.00	0.292	0.354	-4.30	-5.17
Average	0.122	0.244	-2.60	-5.19	0.180	0.320	-3.60	-6.05	0.183	0.324	-3.69	-6.19

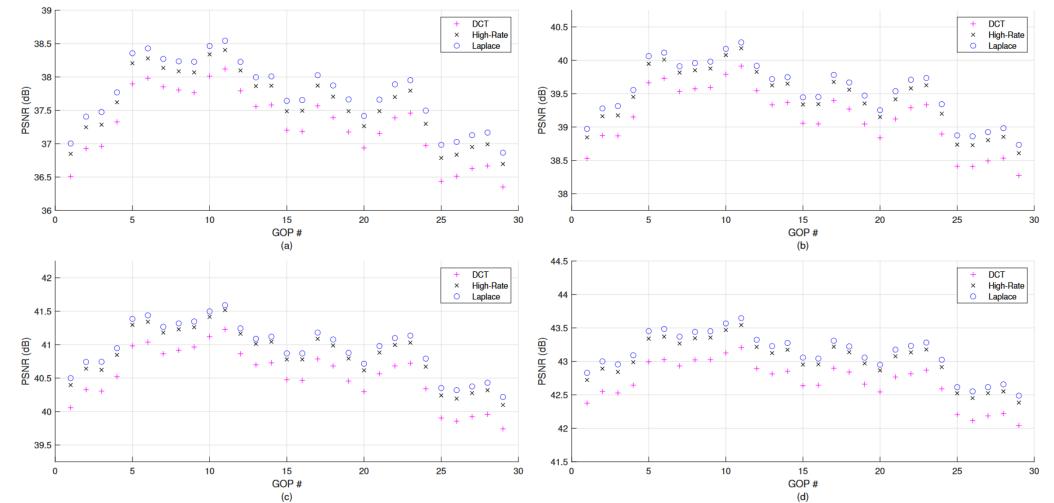
BD-PSNR and BD-Rate gains achieved by transform matrix codebooks over the standard DCT.

Advantage of Adaptive Transforms over the DCT



Histograms of transform-matrix codeword usage in (a) Football and (b) Ice sequences. The size of the codebook N = 6. The first 5 codewords have been optimized using the proposed algorithm, using the Laplacian MSE model (codeword 6 is the standard DCT.)

Adaptive Transform Coding vs DCT



PSNR of coding the Ice sequence using adaptive transforms (codebook size N = 6) and the DCT (non-adaptive). (a) 0.45 bits/pixel, (b) 0.75 bits/pixel, (c) 1.02 bits/pixel and (d) 1.44 bits/pixel. PSNR has been computed for groups of 8 consecutive frames.

Discussion

- The difference between the codebook optimized with the high-rate Gaussian model and the finiterate Laplacian model diminishes as the rate increases.
- However, in all our experiments with MC residuals, it was observed that the Laplacian model always yielded a better codebook. As at low rates, the high-rate Gaussian model can be quite inaccurate or even outright invalid.
- The codebooks are designed off-line, hence the slight complexity increase associated with the use of Laplacian model would not affect encoding complexity.
- In terms of the robustness of the codebooks designed with Laplacian model, our experiments showed that single Laplace codebook optimized for QP=34 is nearly as good as the codebooks optimized for each QP value in the entire range.

Conclusions

- We presented a novel algorithm for designing orthogonal matrix codebooks for transform coding block-wise stationary vector processes
- In contrast to previous work, the proposed algorithm explicitly minimizes the transform coding MSE with respect to the matrix codebook, and hence produces better transforms
- Experimental results obtained with video inter-prediction residual have shown significant coding gains over the DCT
- So far algorithm is applicable only to non-separable transforms, an extension to separable transforms is being currently developed.

