Introduction Huffman Coding Security The Algorithm Empirical Results
C C C o)

[elelele] (e] [e] [e]e] C

000
OC

o]
[ele]e]

A Huffman Code Based Crypto-System

Y. Gross, S. T. Klein, E. Opalinsky,
R. Revivo,D. Shapira

DCC 2022

Introduction
@000

Huffman Coding Security The Algorithm
[e] (e} [ele)

e]e] [ele)
000000 [e]e)

Outline

Introduction
Huffman coding
Security

The Algorithm
Empirical Results

Empirical Results
00

000

0000

Introduction Huffman Coding Security The Algorithm Empirical Results
C o)

(o] lele] (e] [e] [e]e] C
(]} (el
000000 (o]e]

000
&

le]e]
[ele]e]

Concerns of Communication over a network

1. processing speed
2. space savings of the transformed data

3. security

Introduction Huffman Coding Security The Algorithm Empirical Results
C o)

0oeo (e] [e] [e]e] C
(]}
000000

000
O00C

(el o]
[e]e] (o]

» Data Compression
representation in fewer bits
e Encryption
protecting information
achieved by removing redundancies.

Combine for faster and safe transfer
COMRESSION CRYPTOSYSTEM

Introduction Huffman Coding Security The Algorithm Empirical Results
oooe (e] (e} [ele) 00

OOOOOO

o Encrypt then compress - not possible

o Compress then Encrypt

o Embed encryption into compression

Introduction Huffman Coding Security The Algorithm Empirical Results

oe

Cryptosystem based on Huffman Coding
|

Initialize a Huffman tree according to the probabilities
» Use a secret key to select an internal node V
» Apply a transformation
» The transformation will preserve the codeword lengths

» Same compression ratio, different output for different keys

Introduction Huffman Coding Security The Algorithm Empirical Results

[elelele] (e] [e] [e]e] (o]}
(e]e) (el 000
O@0000 [e]e] 0000

Transformation types: MIRROR

10110 (leaf i) = 10110 = 11001

Original Mirror

Introduction Huffman Coding Security The Algorithm Empirical Results
Q000 [e] (e} [ele) 00

(o]} (el 000
®00000 [e]e] 0000

Transformation types: SWAP

10110 (leaf 1) = 10110 = 11110

Original

Introduction Huffman Coding Security The Algorithm Empirical Results
cooe %0 o0 o
00®e000 (e]e]

000

le]e]
[ele]e]

Transformations

« additional parameter : integer 1<k<o

 choose k internal nodes {vi,...,w} = any transformation can be
applied any k number of times (separately or combined)

(use klog(o) bits of the secret key)

« control the trade-off between security and time complexity

Introduction Huffman Coding Security The Algorithm Empirical Results
Q000 [e] (e} [ele) ole)
[ele)

(e]e)
[e]ele] lele] [e]e]

000
&

le]e]
000

Transformations: BULK-CRYPTO-HUFFMAN

Example with the sub-bit stream 101101100 of a secret key.

Introduction Huffman Coding Security The Algorithm Empirical Results
Q000 [e] (e} [ele) 00
e]e] [ele) 000
0000e0

Transformation types: Mirror and Swap

0 easy to implement, but for the o leaves of the tree,
can only produce 2°-1 permutations

much less than possible ol.

Introduction Huffman Coding Security The Algorithm Empirical Results
Q000 [e] (e} [ele) ole)
[ele)

(e]e)
[e]elelele]] [e]e]

000
&

le]e]
000

Transformation types: LEVEL-SWAP

10110 (leaf i) => 11010.

Introduction Huffman Coding Security The Algorithm Empirical Results
[]

Security

Resistance to Cipher Attacks
Chosen Plaintext Attacks

The objective of encryption is to hide the content of a given
plaintext file from an unauthorized eavesdropper.

The goal of such an opponent, on the other hand, is to try
to break the code

Introduction Huffman Coding Security The Algorithm Empirical Results

[le]

Resistance to Cipher Attacks

Is the code breakable?

« Statistics of the occurrences of the alphabet symbols in
natural languages are well-known.

 Guessing the length of codewords with high probability

« Decreases the number of partitions of the code into
codewords?

Introduction Huffman Coding Security The Algorithm Empirical Results

[le]

Resistance to Cipher Attacks

Huffman Compression Crypto-System

» Apply transformations on Huffman tree constantly.

* Opponent knows about the details of the process
except the secret key.

 This turns the problem of partitioning the
ciphertext into codewords into difficult

Introduction Huffman Coding Security The Algorithm Empirical Results

[elelele] O [e] [e]e] (o]}
O. 000

OOOOOO 0000

Swap Mirror Prefix Code (SMPC) NP-Complete

Input: Given are positive integers /, k and p, a text T =

X1 X2 -+ - X, over some alphabet ¥ of size 0 = , an initial
Huffman tree H for ¥, a set of k transformations of the type
swap or mirror, and a binary sequence S.

Question: Is there a subsequence S’ of S of length |S'| = ¢,
such that S’ can be partitioned into codewords of the original
Huffman code induced by H, so that

1. the lengths of the codewords belong to {s.....s+ p} for
some integer s;

2. the set of these codewords satisfies the prefix property;
3. each codeword in S consistently encodes a character of T;

4. one of the k transformations is applied to the current
Huffman tree after the processing of some of the characters.

Introduction Huffman Coding Security The Algorithm Empirical Results

Q000 o} o} (ole] o

000

(o} [ele] (ele]
000000 @0 [ele]e]

Chosen Plaintext Attacks

Same secret key, different ciphertexts.

» Add new symbol DC, as a dont-care, and 2 = 2 U {DC}
« Encoder adds DC in random locations.

« How many DC's not increasing the text significantly?

Introduction Huffman Coding Security The Algorithm Empirical Results
Q000 [e] (e} [ele) 00

e]e] [ele) 000

000000 ce 0000

CPA security: DC symbol

® DC is added with probability '°g(+1) where ¢ > 1 is a
constant controlling the total number of inserted DCs.

® Expected distance between successive occurrences of DCs
at position i by m as if we were using a constant
probability between successive insertions of DCs.

® The overall expected distance between DCs for the entire
range is then £ =237 ez = O(Ggs):

® Expected number of DCs, #(log n), is not bounded, and
the fraction 'Og” of inserted elements tends to zero.

Introduction Huffman Coding Security The Algorithm Empirical Results

oce

CPA Security: skip

« Even with randomly inserted DCs, there could be a
weakness in CPA security for Static Huffman.
(same numbers of DC's)

« After a DC skip over a small constant number h of bits of
the secret key.

Introduction Huffman Coding Security The Algorithm

[elelele] (e] [e] @0
(]} (el
000000 [e]e]

QOutline

The Algorithm

Empirical Results
00

000

0000

Introduction

[elelele]

o ks W N =

~

Huffman Coding Security The Algorithm
[e] (e} @0

e]e] [ele)

000000 [e]e)

Empirical Results
00

000

0000

Algorithm 1: Crypto-Huffman — Encoding

CRrRYPTO-HUFFMAN-ENCODE(X1x2 - - - X, k, K, h)
initialize the model
for i <+ 1tondo

choose randomly a probability value p

if p< 'Og('H then
encode DC according to the current model
skip h bits in IC

encode x; according to the current Huffman tree T

use the secret key K to select k internal nodes {v,...

in T
for j < 1to k do
L apply transformation on v;j in T

:Vk}

Introduction Huffman Coding Security The Algorithm Empirical Results
Q000 o} o} ce [e]e]

000
0000

[e]e] [ele]
000000 (o]e]

Algorithm 2: Crypto-Huffman — Decoding
CRYPTO-HUFFMAN-DECODE(y1y2 - - - ¥m, k, K, h)
initialize the model
for i + 1 to mdo
x < decoding of y; according to the current model
if x = DC then
| skip h bits in K
else
output x
use the secret key K to select k internal nodes
{vi,...,w}inT
for j «+ 1 to k do
9 |_ apply transformation on v; in T

B W =

-~ o

Introduction Huffman Coding Security The Algorithm Empirical Results
Q000 (ole]

(e] o oe
[o]e]

uuuuuuuuu

Empirical Results

Data Set

Large Corpus taken from the Canterbury! corpora

bible.txt, the King James version of the
Bible, of size 4,047,392 Bytes.

Ihttp://corpus.canterbury.ac.nz

http://corpus.canterbury.ac.nz/

Introduction

[elelele]

Huffman Codint

(e]

(]}

000000

Empirical results:

Security

[e]
(el
[e]e]

The Algorithm
[ele)

Uniformity

Empirical Results
00
@00

0000

bit-str STATIC L-Swap MIRROR-1 ~ MIRROR-2 Swap-1 Swap-2 BULK
0 0.495477 0.500097 0.500061 0.500091 0.500138 0.500092 0.500034
1 0.504523 0.499903 0.499939 0.499909 0.499862 0.499908 0.499966
00 0.249532 0.250076 0.249985 0.250030 0.250074 0.250030 0.250060
01 0.245944 0.250021 0.250076 0.250060 0.250074 0.250060 0.249974
10 0.245944 0.250021 0.250076 0.250060 0.250074 0.250060 0.249974
11 0.258579 0.249882 0.249863 0.249850 0.249798 0.249849 0.249992
000 0.122962 0.121652 0.124964 0.124989 0.125050 0.124989 0.125053
001 0.126570 0.128424 0.125022 0.125042 0.125024 0.125042 0.125007
010 0.119103 0.121522 0.125012 0.125093 0.124975 0.125093 0.124968
011 0.126842 0.128499 0.125063 0.124968 0.125089 0.124968 0.125007
100 0.126570 0.128424 0.125022 0.125042 0.125024 0.125042 0.125007
101 0.119374 0.121597 0.125054 0.125018 0.125040 0.125018 0.124967
110 0.126842 0.128499 0.125063 0.124968 0.125089 0.124968 0.125007
111 0.131737 0.121384 0.124800 0.124882 0.124709 0.124882 0.124985

Probability of 1-, 2- and 3-bit substrings for the Huffman variants.

Introduction Huffman Coding Security The Algorithm Empirical Results

[elelele] (e] [e] [e]e] (o]}
(]} (el oeo
000000 [e]e] 0000

Uniformity: KL distance

e Kullback-Leibler (KL) divergence
P:{pla"‘apn} ' Q:{qlr"'7qn}v

Pi
Die(PlQ) = pilog =
one-sided, asymmetric, distance from P to Q
e Q is uniform on 2™ elements, U,, = {27™,...,27 ™}

® Dii(P||Upn) = m— H(P),

H(P) is the entropy of P.

Introduction

[elelele]

KL Divergence

10 2
103
1074
10°°
1076
1077
108

Huffman Coding Security The Algorithm Empirical Results

(e] [e] [e]e] (o]}
(]} (el ooe
000000 [e]e] 0000

Uniformity: KL distance

m
STATIC —— MIRROR-1 — SwarPrl
—— BULK —— LEVEL-SWAP ---- DvyN.

DyN. MIRROR-1 ---- D¥yN. SwaAapP-1 ---- DYN. BULK

Introduction Huffman Coding Security The Algorithm Empirical Results
Q000 [e] (e} [ele) C
e]e] [ele)
000000 [e]e)

Sensitivity to variations in the secret key.

000
@000

The Normalized Hamming distance:

let A=a,---a,and B = by --- b, be two bitstrings and
assume n > m.

=~

The normalized Hamming distance: =37 . (a; XOR b;).

Introduction Huffman Coding Security The Algorithm Empirical Results
Q000 [e] (e} [ele) 00

e]e] [ele) 000
000000 [e]e) [o] Tele]

Secret Key Variations

—_— 0.5 limit

0.6 —— Dyn-bulk 0.50008

——— Dyn-mirror-1 ~ 0.50026

2 0.5 _ Dyn-Swap-1 0.49983

Z —— Level-Swap 0.50021
0.4

0 300 600 900 1,200

prefix size

NHD between two runs on the same text with different
randomly generated keys K; and KCs.

Introduction Huffman Coding Security The Algorithm Empirical Results
Q000 [e] (e} [ele) 00

e]e] [ele) 000
000000 [e]e) [ele] le]

CPA security NHD.

—_— 0.5 limit
—— L-swap 0.50007
I swap 0.49950

bulk 0.49984
-----Dyn-swap 0.49995
----- Dyn-bulk 0.49982

NHD

0 300 600 900 1,200 1,500

prefix size

NHD for two runs on the same text with the same key, but
different DCs.

Introduction Huffman Coding Security The Algorithm Empirical Results

[elefe])

THANK YOU

