
On Dynamic Bitvector Implementations
Saska Dönges∗ Simon J. Puglisi∗ Rajeev Raman†

∗Univeristy of Helsinki
†University of Leicester

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 0 / 22



CONTENTS

1 Brief problem statement and description of where we started

2 Our contributions and the effects these have on performance

3 Future work

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 1 / 22



BACKGROUND

Supported operations for static bit vectors are
• Access (at(i) = value of i-th bit),
• Rank (rank(i) =

∑i
j=0 at(i) = number of 1-bits in the first i bits), and

• Select (select(i) = argmin
j

rank(j) ≥ i = location of the i-th 1-bit)
.
Bitvectors, even uncompressed, are useful building blocks for space efficient data
structures, e.g. Compressed strings that support random access are commonly
used in e.g. bioinformatics.

1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 2 / 22



BACKGROUND

If the bitvector is made to support modifications (set, insert, remove), the derived
data structures can also be made dynamic.

Tha same representation for the bit vector can’t be used practically since any
insertion or removal requires rewriting the bitvector (and any support structure) in
the worst case.

1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0

0

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 3 / 22



BACKGROUND

Element overhead (O(1) for each element)

1-bit

0-bit

Cumulative sums, child sizes

and child pointers

State-of-the-art currently∗ is a B-tree-like data
structure implemented by Nicola Prezza†.

The bitvector implementation (among other neat
stuff) is contained in the DYNAMIC C++ template
library: https://github.com/xxsds/DYNAMIC
∗To the best of our knowledge
†Prezza, N. (2017). “A Framework of Dynamic

Data Structures for String Processing”. LIPIcs.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 4 / 22

https://github.com/xxsds/DYNAMIC


OUR CONTRIBUTIONS

1 Full rewrite of the data structure from scratch.

2 Branch selection using branchless binary search.

3 Buffering insertions / removals at the leaf blocks.

4 Temporary static support structures.

5 Dynamic hybrid leaf compression using run-length-encoding.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 5 / 22



OUR CONTRIBUTIONS

1 Full rewrite of the data structure from scratch.

2 Branch selection using branchless binary search.

3 Buffering insertions / removals at the leaf blocks.

4 Temporary static support structures.

5 Dynamic hybrid leaf compression using run-length-encoding.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 5 / 22



CONTRIBUTIONS – REWRITE

The implementation of the dynamic “Searchable partial sum” and leaf structures in
DYNAMIC is not specifically engineered with just bitvectors in mind.

Rewriting the entire structure purely for bitvectors allowed for some optimizations
that would be more difficult to implement as changes to DYNAMIC.

Most of the current code base is highly optimized for code path and cache efficiency.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 6 / 22



CONTRIBUTIONS – REWRITE

In addition, changes to how the tree is balanced to eliminate insertion and removal
oscillations present in DYNAMIC.

Before splitting or merging, we check if shuffling elements between nodes is
sufficient. And if splitting or merging is required, the operations are done so that the
same node will not need to be rebalanced again soon.

After any balancing operation, the involved nodes (internal or leaf) are guaranteed
to support Θ(b)† operations before rebalaning.

†where b is the maximum node / leaf size

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 7 / 22



CONTRIBUTIONS – BRANCHING

To execute operations on the bitvector, the correct subtree branch needs to be
selected at each internal node, based on cumulative sums and child sizes.

These branch selections form a root to leaf path.

DYNAMIC uses a linear scan for branch selection. This is extremely fast for low
branching factors.

Our branch selection is based on branchless binary search. However, instead of the
typical cmov-based implementations, we chose to limit the allowed universe size to
allow us to use the “sign-bit” of the partial sums for calculating branching.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 8 / 22



CONTRIBUTIONS – BRANCHING

This along with prefetching allows us to use a higher branching factor without
significant penalty to branch selection.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 9 / 22



RESULTS I
Performance comparison to DYNAMIC.

Mean operation times for random operations as function of number of bits stored.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 10 / 22



CONTRIBUTIONS – BUFFERING

Instead of writing to the leaf directly, we register the operation in a buffer and write
multiple insertions / removals at once.

We add a small b-element buffer or 32 bit integers to each ` element leaf node.

This changes the time complexity of insertions and removals (at the leaves) from
O(`) to O(b + `/b).

Unfortunately this also adds a O(b) component to all queries.

Would ideally improve overall performance, especially for modification heavy
workloads.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 11 / 22



RESULTS II
Effects of buffering.

Insertions and removals speed up significantly. Select slows down
significantly.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 12 / 22



CONTRIBUTIONS –
SUPPORT STRUCTURES

Create a temporary static support structure for the bitvector to speed up queries.

In practice the support structure is either an SDSL∗ bitvector with associated
support structures, or a custom support structure build specifically for our dynamic
bitvector.

∗S. Gog, T. Beller, A. Mffat, and M. Petri. From theory to practice: Plug and play with succinct data
structures. In Proc. SEA, LNCS, pages 326-337. Springer, 2014.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 13 / 22



RESULTS – III
Construction time / speed trade-off.

Using SDSL takes and additional ∼ 1.4n, and the the custom structure an additional ∼ 0.2n bits of
space.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 14 / 22



CONTRIBUTION – COMPRESSION

Inspired by Kärkkäinen et al.∗, we implemented a hybrid encoding scheme for the
leaves.

Currently the encoding for each leaf is dynamically chosen to be plain or
run-length-encoded.

RLE was chosen due to the relative simplicity of implementation in the current
architecture.

∗J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Hybrid compression of bitvectors for the FM-index. In
Proc. DCC, pages 302-311. IEEE, 2014.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 15 / 22



CONTRIBUTIONS – COMPRESSION

The encoding for a leaf can be changed any time the buffer of the leaf is committed
due to being full.

This has the effect of eliminating the need to repeatedly change leaf encodings.

Current implementation is very resistant to splitting the first few leaves, leading to
some strange behaviour for some “small” data structure sizes.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 16 / 22



RESULTS – IV
Performance of hybrid RLE.

Probability of 1-bit goes from very low to very high:

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 17 / 22



RESULTS – V

kernel 20M cere
cw-bwt DYNAMIC plain hybrid-RLE DYNAMIC plain hybrid-RLE
Time (s) 164 51 147 1982 817 1521
RSS (kB) 21312 18472 13024 184304 179032 86760
h0-LZ77
Time (s) 641 647 1492 4650 2494 4572
RSS (kB) 21276 20432 10796 227908 217524 52896

Allocated (kB) 18561 17347 5892 213075 205349 45998

Table: Performance of the DYNAMIC’s suc bv bitvector and our plain and hybrid-rle
compressed bitvectors on the cw-bwt and h0-LZ77 benchmarks from the DYNAMIC library.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 18 / 22



FUTURE

There is still much to do with our dynamic bitvector.

There are multiple practical and quality of life improvements required to make the
current implementation more usable

In additon, there are multiple unexplored avenues for research.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 19 / 22



PRACTICAL STUFF

At least the following need to be “fixed”:

• Code quality improvements

• Strange behaviour with small hybrid-RLE bitvectors should be resolved

• Codepath and cache performance optimization should be done for the support
structures and the hybrid approach

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 20 / 22



FURTHER RESEARCH

• At least minority bit compression should be added to the hybrid approach
• The current malloc-based allocation should be evaluated and possibly

replaced
• We have ideas for alternatives to the current buffering implentation
• Some use-cases generate repeated queries that could be serviced by query

caching
• Buffering at internal nodes could be beneficial but practical implementation is

unclear
• Research effects of further vectorization with e.g. AVX512.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 21 / 22



CONCLUSIONS
Performance comparison to DYNAMIC.

Dynamic Bitvectors / Saska Dönges, Simon J. Puglisi, Rajeev Raman March 24, DCC2022 22 / 22


	Title
	Content
	Research
	Future research

