

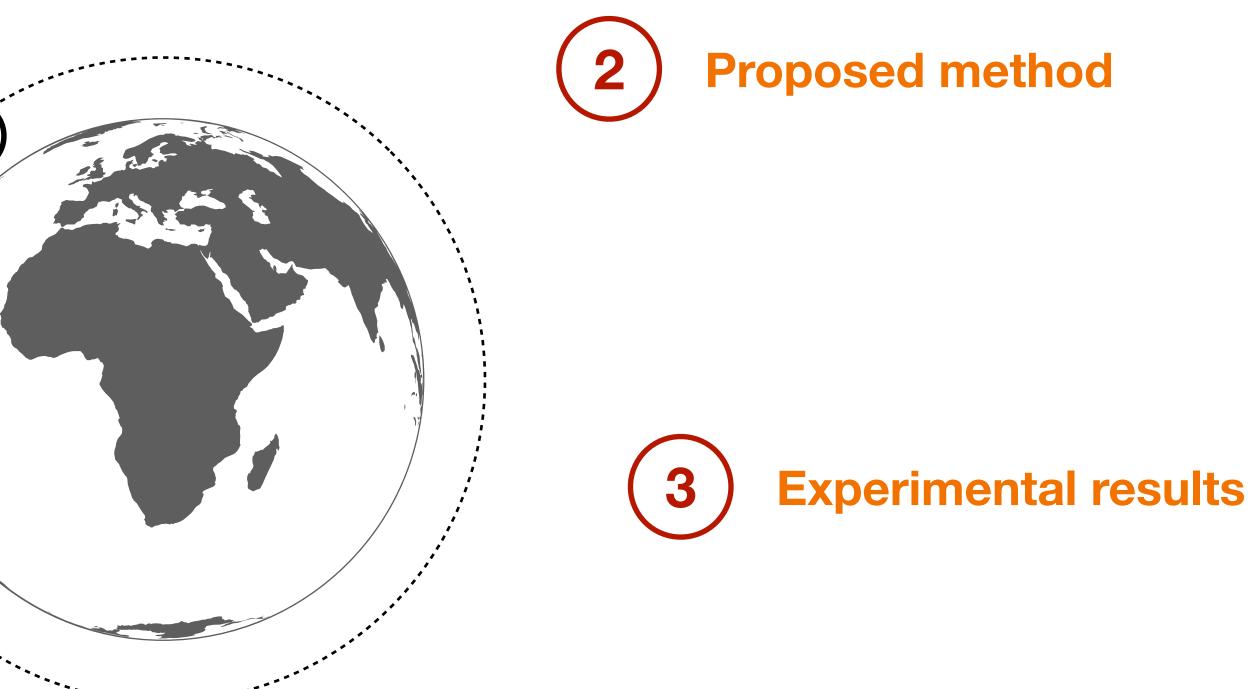
Hyperspectral remote sensing data compression with neural networks

Sebastià Mijares i Verdú **Joan Bartrina Rapesta Valero Laparra**

Data Compression Conference (DCC) 2022

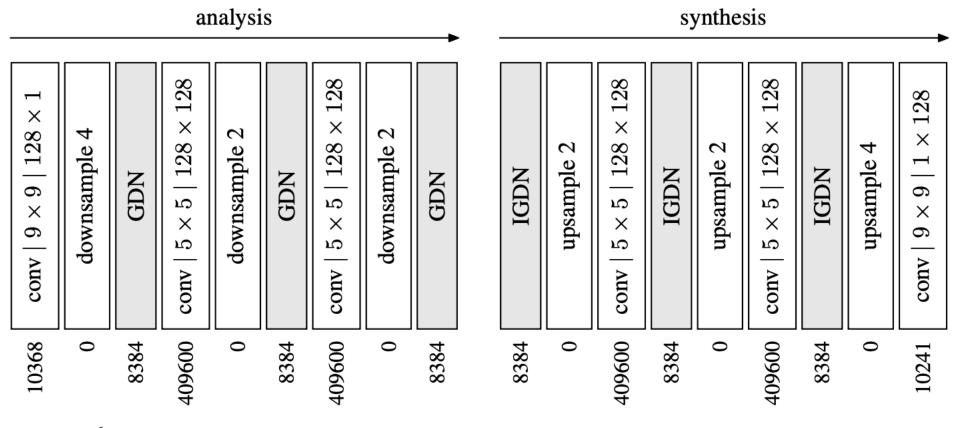
Miguel Hernández-Cabronero Johannes Ballé Joan Serra-Sagristà

Machine Learning compression of remote sensing images

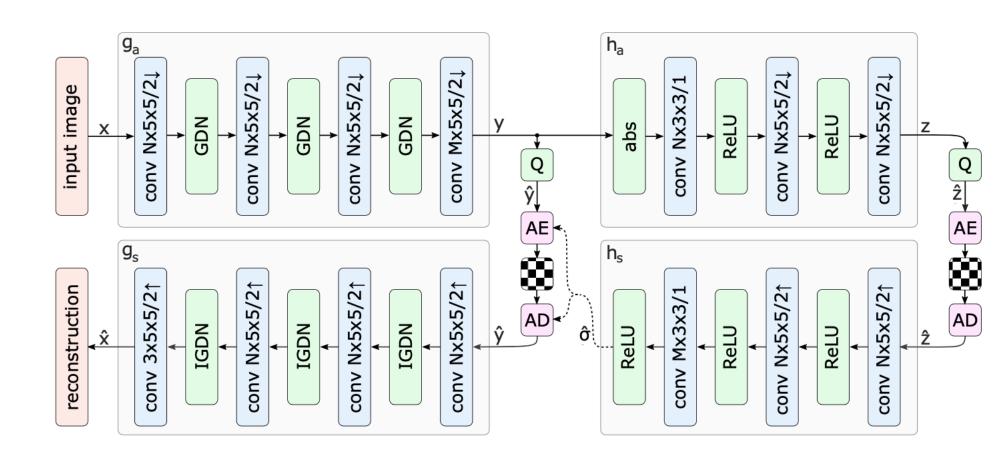


Machine Learning compression of remote sensing images

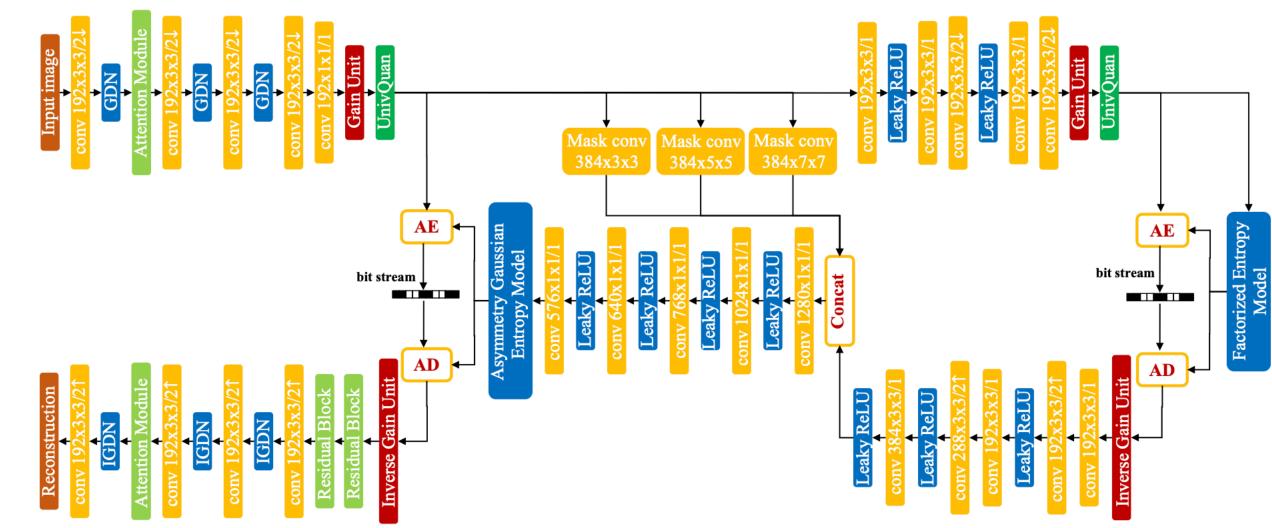
Machine Learning image compression A very active field of research



J. Ballé, V. Laparra, E. Simoncelli (2017)



J. Ballé, D. Minnen, S. Singh, S. J. Hwang, N. Johnston (2018)



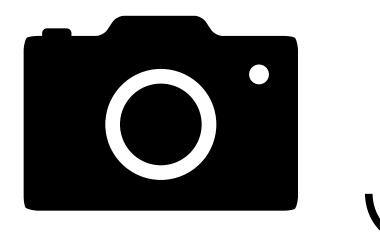
Z. Cui, J. Wang, S. Gao, T. Guo, Y. Feng, B. Bai (2021)



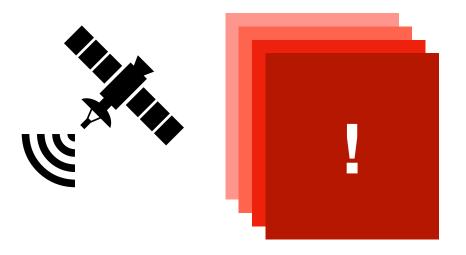
Increasingly complex designs

Machine Learning image compression Three key points

These systems are computationally costly 2



Computational complexity grows superlinearly with the number of input channels

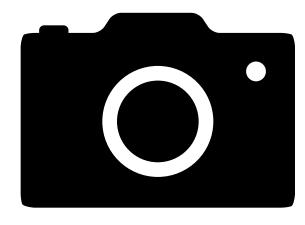


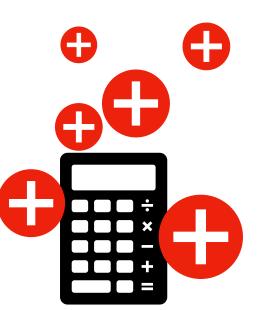
Machine Learning image compression Challenges with remote sensing data

These systems are computationally costly

Remote sensing is ususally carried out on low-power platforms

Remote sensing images are typically hyperspectral, with many channels

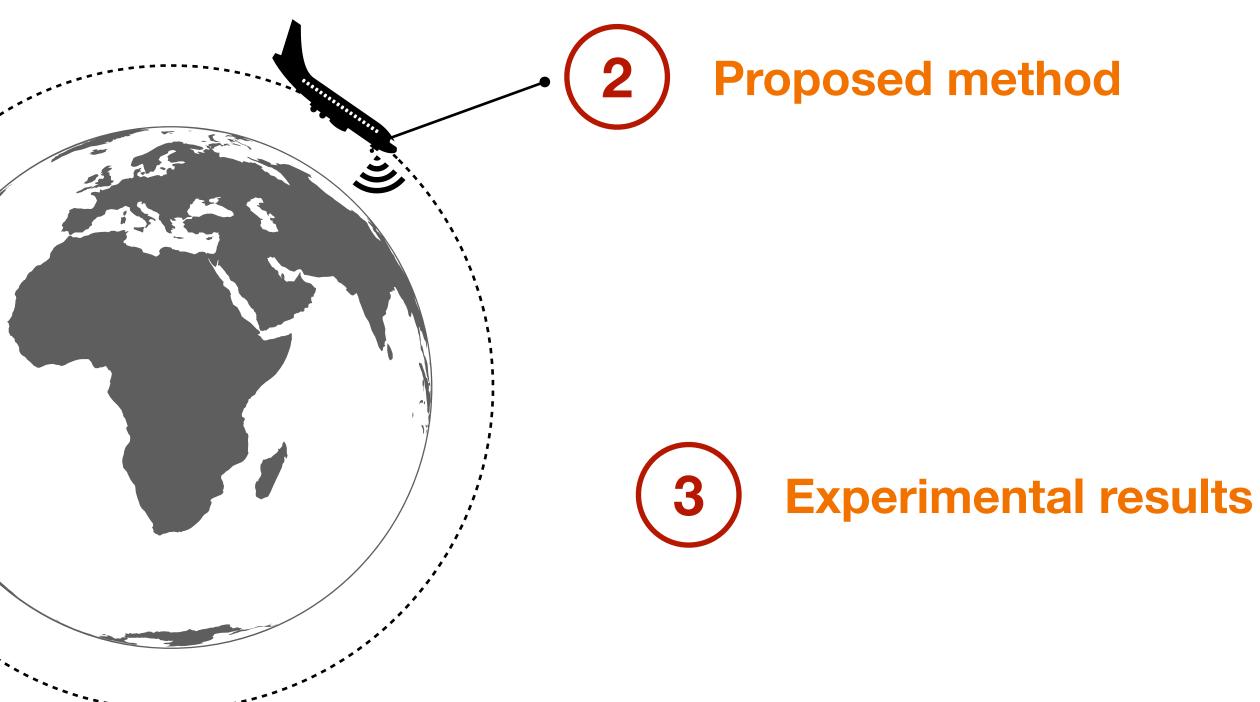




Computational complexity grows superlinearly with the number of input channels



Machine Learning compression of remote sensing images



Proposed method

Proposed method Three key features

Band-by-band

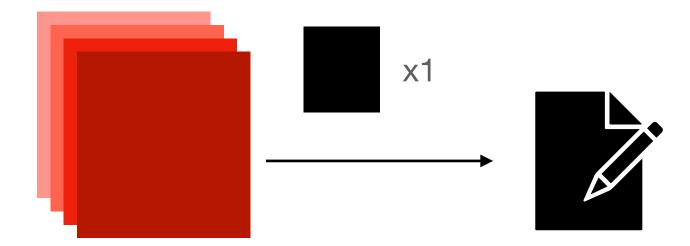
Spectral partition

Small encoders

Proposed method Band-by-band

Band-by-band

Processing the image channelby-channel allows us to use smaller networks and keep encoding time essentially linear with respect to the number of channels.



What about spectral correlation?

Spectral partition

Small encoders

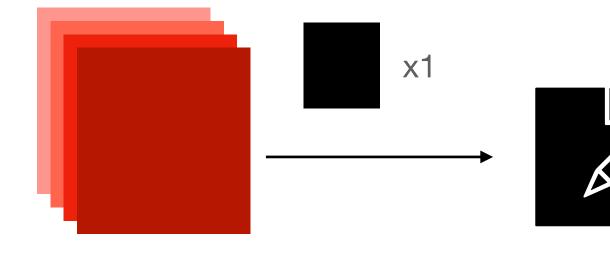
Proposed method Spectral partition

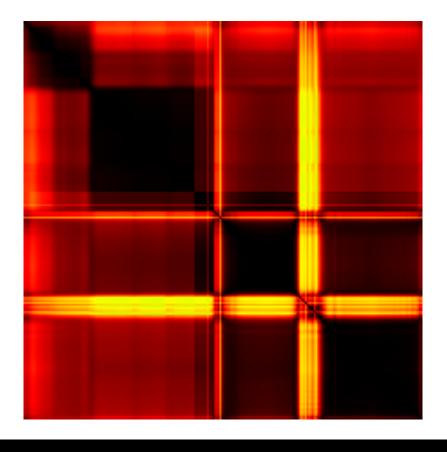
Band-by-band

Processing the image channelby-channel allows us to use smaller networks and keep processing complexity linear with respect to the number of channels.

Typically hyperspectral images have very high similarity along the spectrum, particularly between adjacent channels, which often comes in **clusters**, as opposed to a mere continuous gradient.

We trained one independent model for each such interval of bands, which allows our models to be focused on a specific distribution, so they can improve performance thanks to high specialisation.





Aren't neural-network codecs very complex anyway?

Spectral partition

Small encoders

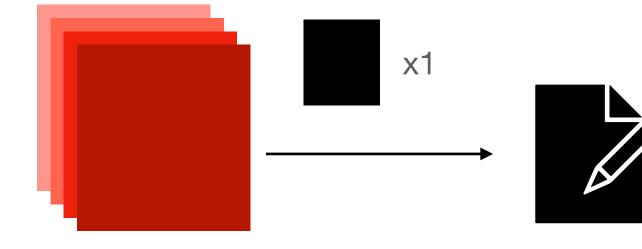
Proposed method Small encoders

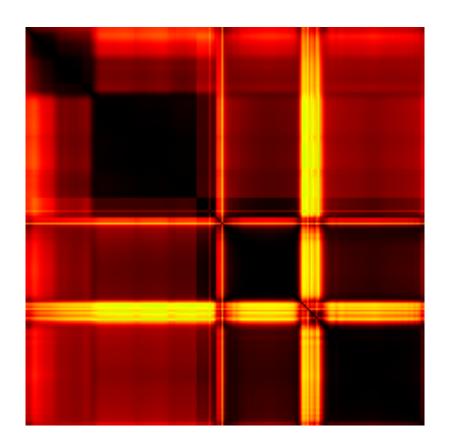
Band-by-band

Processing the image channelby-channel allows us to use smaller networks and keep processing complexity linear with respect to the number of channels.

Typically hyperspectral images have very high similarity along the spectrum, particularly between adjacent channels, which often comes in **clusters**, as opposed to a mere continuous gradient.

We trained one independent model for each such interval of bands, which allows our models to be focused on a specific distribution, so they can improve performance thanks to high specialisation.

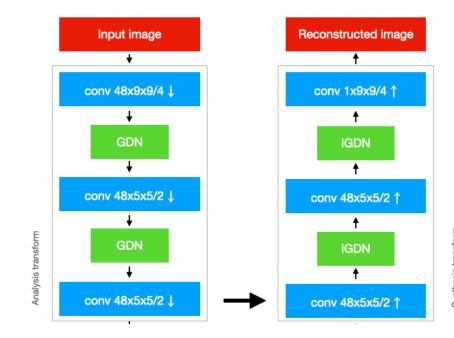


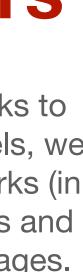


Spectral partition

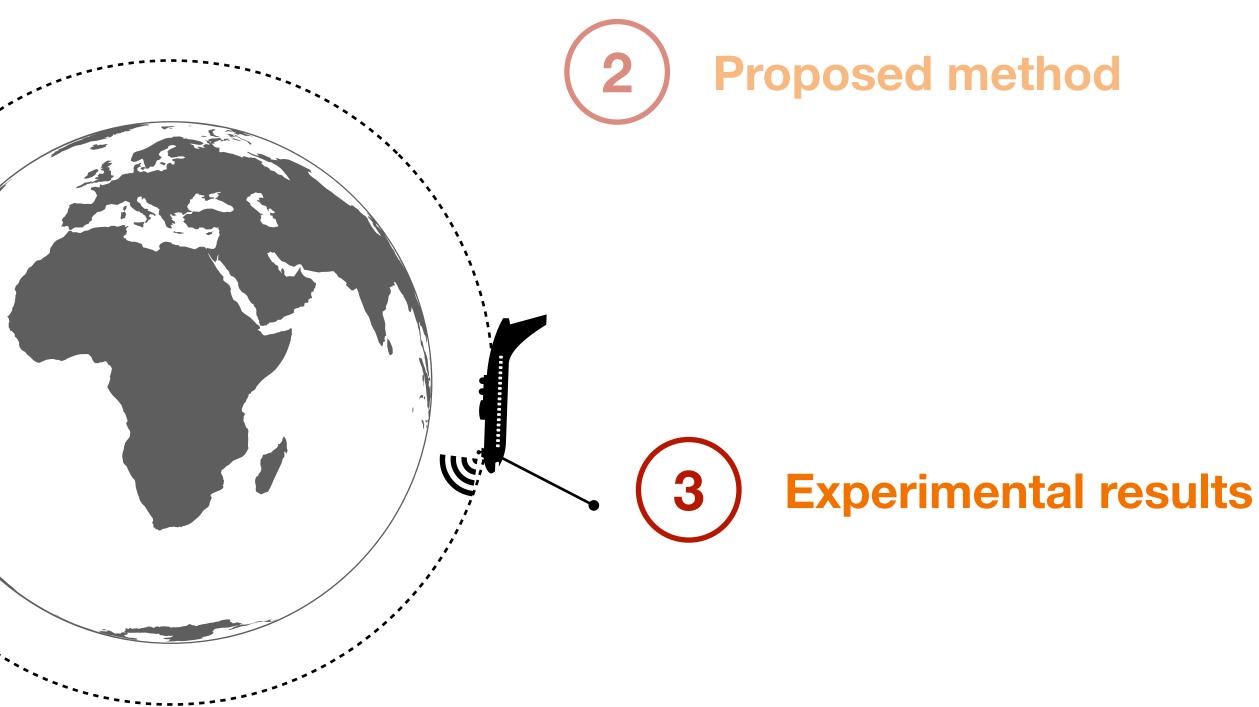
Small encoders

To keep complexity low, and thanks to the high specialisation of our models, we can competitively use small networks (in terms of the number of parameters and operations) to compress those images.



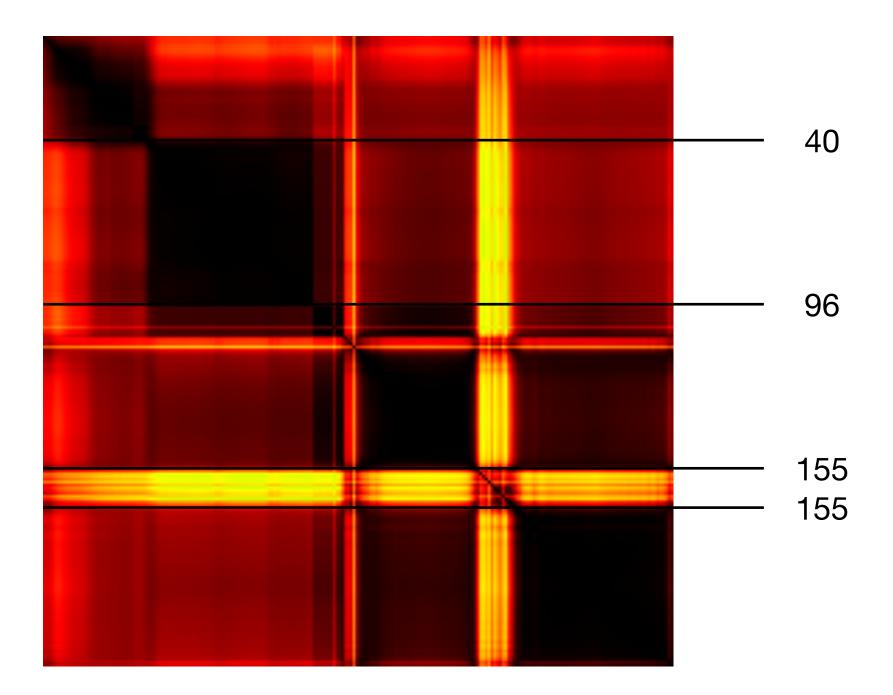


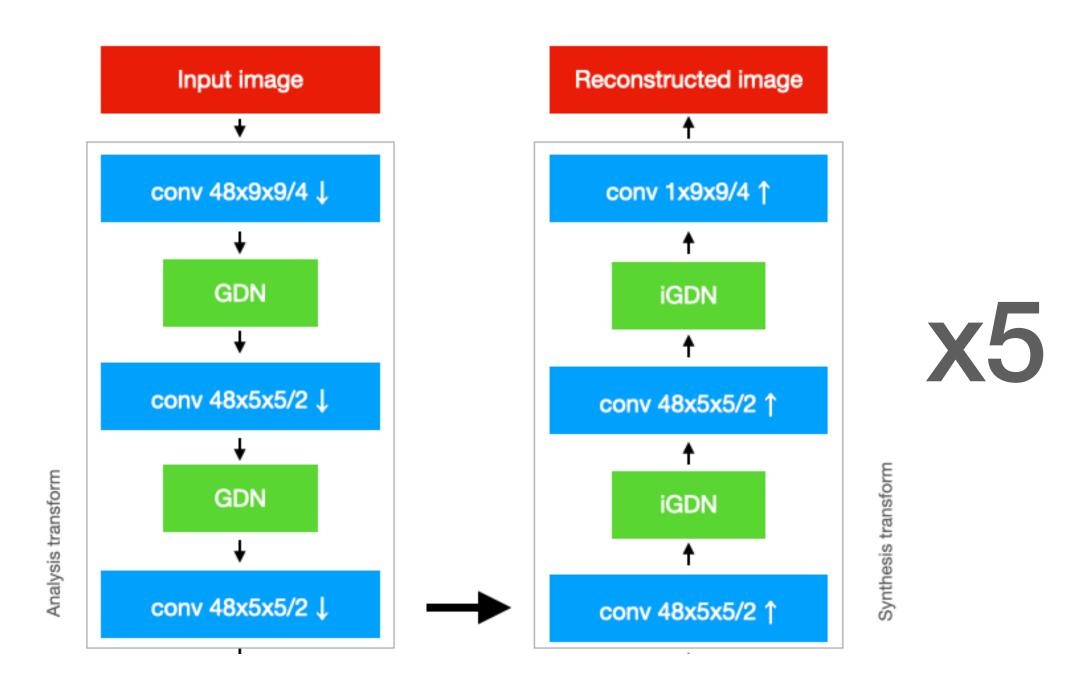
Machine Learning compression of remote sensing images



Experimental results

Experimental results Setup



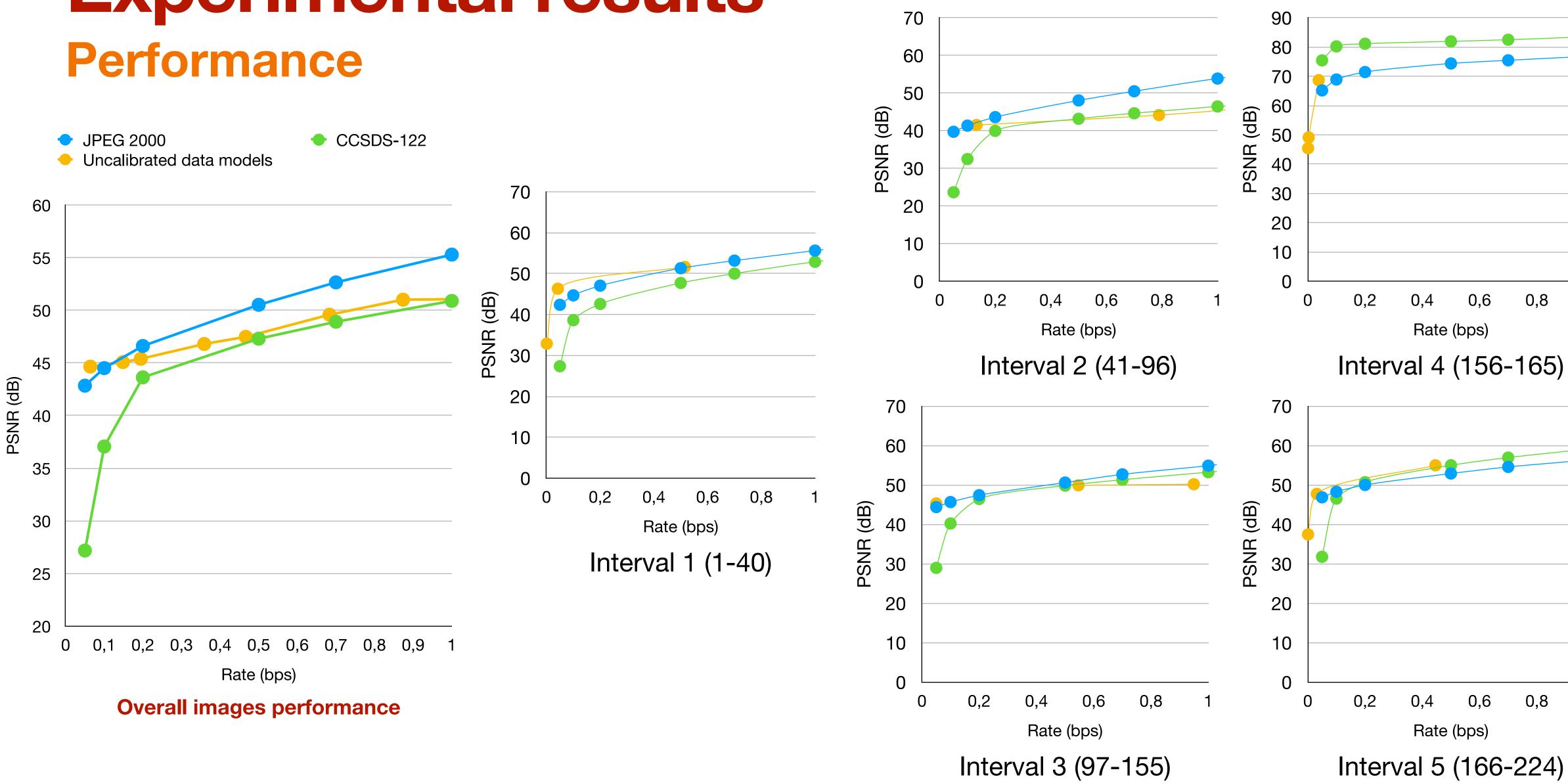


Models

2

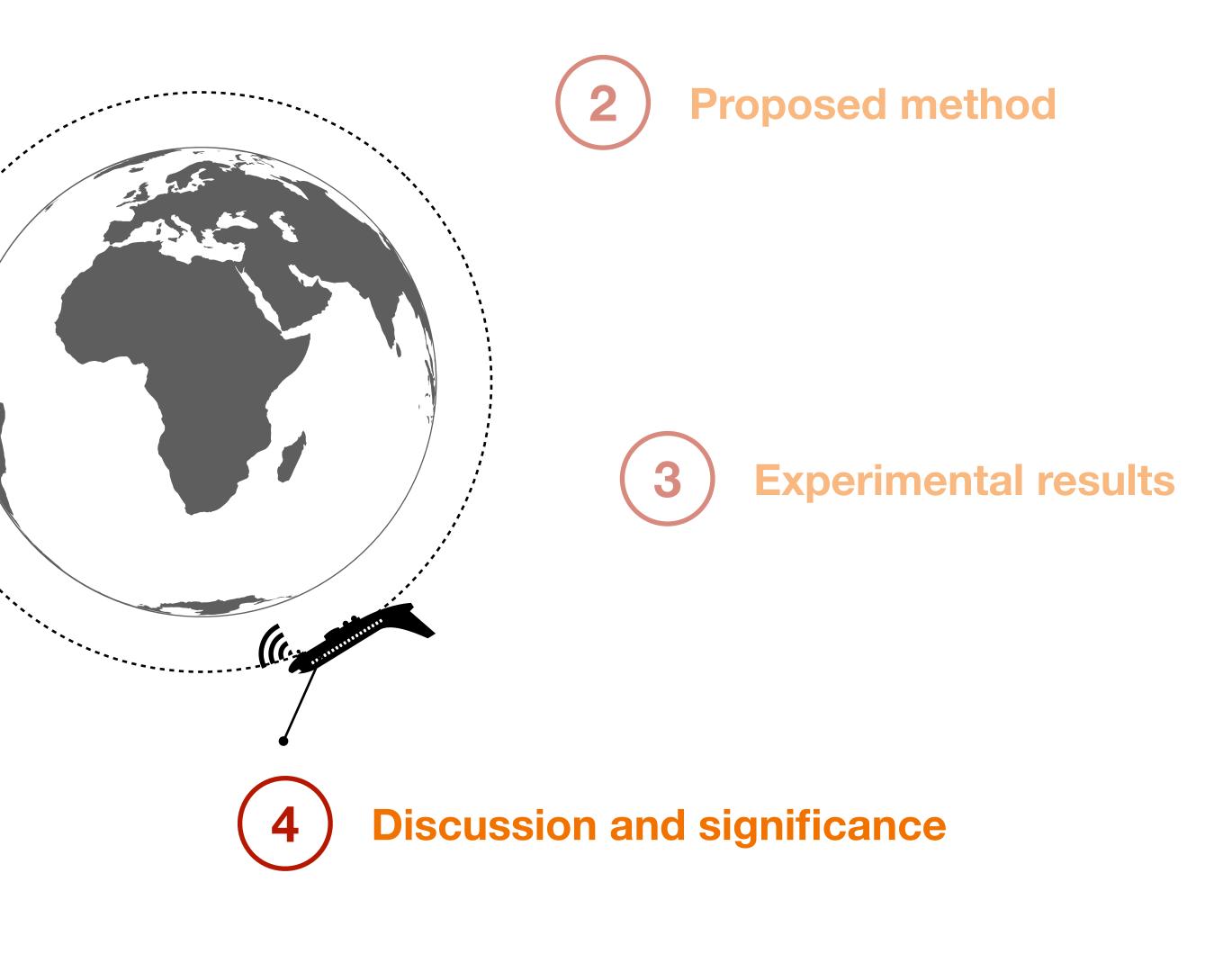
We used a proven architecture by Ballé *et al.* with just 48 filters. One instance of this architecture (model) was trained for each of the intervals, 5 in total.

Experimental results



	1
	I
5)	
' /	
	•
	-
	1

Machine Learning compression of remote sensing images



Discussion and significance

Discussion and significance What have we learned?

First contibution for ML compression of hyperspectral image (i.e. >100 bands)

Hyperspectral remote sensing data compression with neural networks

Sebastià Mijares i Verdú **Joan Bartrina Rapesta Valero Laparra**

Data Compression Conference (DCC) 2022

Miguel Hernández-Cabronero Johannes Ballé Joan Serra-Sagristà

