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• Investigation of compression schemes for NN models’ size reduction, under the prism of photonic FPGA limitations.

Goal

• Photonic circuits pave the way to ultrafast computing and real-time inference of applications with paramount importance, such as 
imaging flow cytometry (IFC).

• Nevertheless, current photonic FPGA implementations, exhibit inherent restrictions that consequently diminish the neural
networks (NN) complexity that can be supported: few inputs (~50), few number of tunable basic units (TBUs) (~200), i.e.
multiplication of small matrices (e.g. 11x11 for a fully connected layer).

Background

• Examination of the cell 
image classification pro-
blem (small vs. large cells)

Architecture

Network pruning Network quantization
• KD is the process of training and

improving the performance of a
small deep learning model by
utilizing a pre-trained larger one.

CAE & Pruned & Quantized CNN with KD

Accuracy +1%

CAE & Pruned & Quantized FNN with KD

Accuracy +0.4%

CAE & Pruned & Quantized ViT with KD

Accuracy +0.3%

Knowledge Distillation

• The models depicted adequate stability to the applied compression, revealing NNs size reduction methods, could significantly decrease the size 
of a model without sacrificing much the accuracy, bringing the model closer the photonic FPGA limitations.

• By combining compression methods, which is suggested as the primary technique, beyond the models size reduction, low energy consumption 
and noise tolerance are achievable on the photonic FPGA.
FFNN: -0.8% accuracy, -60% size; CNN: -1.4% accuracy, -39% size; ViT: -0.1% accuracy, -57% size

• Future work includes implementation of reduced NN on photonic FPGA simulators, and classification of time-stretched single pixel cytometry 
images, coming from the Single Pixel Time-Encoded Microscopy (STEM) Imaging technique of the NEOTERIC project.

• Examination of an optical patching scheme and compression of it, for optical convolution and recurrence for adaptation on the photonic FPGA.

Conclusions
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1,467 93.5 Pruned 

and 

Quantized

5,943 95.1

There is a trade-off between accuracy and 

model size.

There is a little drop in accuracy (~1.3% for 

FNN, 0.4% for ViT) but the model is ~x2.5 

smaller, closely to a photonic adaptation.

• Examined NN models:
• Feed-forward (FNN)
• Convolutional Neural 

Networks (CNN)
• Vision transformers (ViT)

• Network compression methods:
• Feature extraction
• Network pruning
• Network quantization
• Knowledge distillation 

(KD)

FNN Initial
parameters

418
Accuracy: 

94.8%

CNN Initial
parameters

197
Accuracy: 

93.7%

ViT Initial
parameters

821
Accuracy: 

95.6%

FNN Final
parameters

230
Accuracy: 

93.6%

CNN Final
parameters

168
Accuracy: 

91.7%

ViT Final
parameters

493
Accuracy: 

95.2%

There is a trade-
off between 
accuracy and 

pruning sparsity 
factor

Example of int8 quantization applied to a FNN & ViT:

Before 
Pruning

After 
Pruning

Feature Extraction

• Convolutional Auto-Encoders (CAE)
Variant of CNNs, learning a compressed
representation of the input (66x66 7x7).

• Downsampling
Usage of nearest-neighbor interpolation (66x66 7x7)

Improves 
accuracy

e.g. ViT: +3%

Software 
preprocess/extra 

FPGA

✓ ✘
Completely 
on photonic 

FPGA

Accuracy metrics 
decrease

e.g. ViT: -9%

✓ ✘

• Post-training model quantization can
reduce latency, processing power, and
model size with little degradation in
accuracy.

• Weights get converted to types with
reduced precision, such as 16-bit
floats or 8-bit integers, shrinking
models up to 4 times.

• Neural network pruning, gradually zeroing
out model weights throughout the
training phase, to achieve model sparsity.
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