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Set up

A simple undirected graph G is called an Interval graph if (a) with every vertex 

we can associate a closed interval on the real line, and (b) two vertices share an 

edge if and only if the corresponding intervals are not disjoint.

Interval graph

Interval 

representation



Set up

Given a set T consisting of combinatorial objects with certain property, a data 

structure Z is called 

• Succinct if Z can store any arbitrary member x from T using log(|T|) + 

o(log(|T|)) bits, OR

• Compact if Z can store any arbitrary member x from T using O(log(|T|)) bits,

along with fast query support.                                      

There already exist succinct/compact data structures for various combinatorial objects 

like arbitrary graphs, planar graphs, trees, deterministic finite automata, permutations, 

equivalence classes and many more. 



Prior Work

• Acan et al. (Algorithmica 2021) proposed a succinct data structure for storing and navigating 

interval graphs. 

• More specifically, given an unlabeled interval graph G with n vertices, they first show that at 

least n log n - 2n log log n - O(n) bits are necessary to represent G. 

• This is followed by a matching data structure consuming n log n + O(n) bits of space with 

constant time queries i.e., degree, adjacency and neighborhood.

Can we design efficient data structures whose space 

consumption beats the information-theoretic lower 

bound under some bounded parameter condition?



Our Main Results

• When the maximum degree of any interval graph is bounded by k, we show that there 

exists an (n log k + O(n))-bit data structure. Thus, our data structure surpasses the 

information-theoretic lower bound when k = O(n^ε) where 0 < ε < 1.

• We augment the upper bound result by giving an explicit ((1/6) n log k - O(n))-bit 

enumerative lower bound. Our result provides counting lower bound by taking into 

consideration maximum degree as a parameter for interval graphs for the first time in the 

related literature.

• Finally, we consider interval graphs with bounded chromatic number p, and here, we 

design a (p-1)n + o(pn) bit data structure with efficient navigational query support. Thus, 

our data structure surpasses the information-theoretic lower bound when p = o(log n).



Upper Bound
This upper bound follows from the result of Acan et al.’s (Algorithmica 2021) result in a straightforward manner.

r stores end points explicitly of the intervals starting from left to right.

Every interval has distinct start and end point. Overall, for n 

intervals, all the endpoints make up 2n distinct integers from 1 to 

2n without loss of generality. 

S is a bit string of size 2n bits with 0s in starting locations and 1 at 

the ending locations.

With additional o(n) bit structures (Rank and Select), it is 

possible to store r and S using n log n + O(n) bits such that 

degree/adjacency/neighborhood queries can be supported.

r = 5 3 6 4 5 8 4 4 2

r stores difference between end point and start point of the intervals 

starting from left to right.

As the maximum degree of our input interval graph is bounded by k, in total the data structure consumes 

(n log k + O(n))-bit along with supporting fast queries.

Is this optimal?



Lower Bound

For any interval graph G with n vertices, if the maximum degree of G is k, at 

least ((1/6) n log k - O(n))-bits are necessary to represent G.

• Let T be a set of all non-isomorphic interval graphs with n vertices where for each graph G in T, 

its interval representation satisfies (i) all the starting and endpoints of the intervals are distinct, 

and (ii) the maximum degree of G is at most k. Then |T| gives our desired lower bound.

Proof Idea:

• We first obtain an interval representation from the interval graph using bundle hypergraph.

• For an interval graph G, let C be a set of all the inclusion-maximal cliques in G. Also, let Bv be the bundle
at vertex v, which is a set of maxcliques in C containing v. Then the bundle hypergraph Δ = (C, E(Δ)) is a 

hypergraph where its hyperedges are the bundles of G. i.e., E(Δ) = {Bv | v in V}. 



Proof Idea
• It is known that if G is an interval graph, one can define an ordering among the maxcliques in C to satisfy the 

property that every hyperedge of Δ consists of consecutive maxcliques in C. Thus, by denoting the i-th maxclique

in C as Ci, one can define the interval representation of G as for each v as Iv = [i, j] if Bv = {Ci, Ci+1, …, Cj}.

• Note that multiple intervals can share same end 

points, but we can easily make the endpoints 

distinct by changing the shared endpoints as 

consecutive integers. 

• We say Bu and Bv overlap if Bu∩ Bv ≠ {Bu ,Bv , Φ}. 

Similarly, Δ is called overlap connected if for any 

two hyperedges Bu and Bv , there exists a sequence 

S of hyperedges from Bu to Bv where any two 

consecutive hyperedges in S are overlapped.



Proof Idea

(Kobler et al. SICOMP 2011) showed the following 

• there exists a bijection between the set of all non-isomorphic interval graphs and the set of all non-isomorphic 

bundle hypergraphs, and 

• if Δ is overlap connected, there exist at most two minimal interval representations of Δ, C and D, where D is a 

mirror image of C.

• Thus, by counting the number of distinct minimal interval representation 

whose corresponding bundle hypergraph Δ is overlap connected, we can 

obtain the lower bound of the number of non-isomorphic interval graphs. 

((1/6) n log k - O(n)) bits are needed when maximum degree is bounded by k.
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In the extended version of our paper, we show similar results can be obtained for circular-arc graphs 

when parameterized by maximum degree and chromatic number.



Conclusion

• All our data structures are compact. Can we make them succinct?

• Which parameter would give better compression than the ones we considered here?

• Systematic study of parameterized data structures for combinatorial objects.

Thank you for your attention


