
Applying Practical Parallel 
Grammar Compression

to Large-scale Data

Masaki Matsushita and Yasushi Inoguchi
Japan Advanced Institute of Science and Technology



Introduction

● Grammar compression algorithm
○ Generates CFG deriving the source text

● Re-pair
○ Representative grammar compression algorithm
○ Achieves high compression rate for text, graph and tree
○ Slower than general compression algorithm in practice

→ We addressed this issue with parallel processing.
● Parallel Re-pair: Parallel variant of Re-pair

○ Basic implementation was shown in DCC 2021
○ In this session, we propose a practical implementation

2



Sample Application of Re-Pair

step sequence dictionary

0 abracadabra X1→ab

1 X1racadX1ra X2→ra

2 X1X2cadX1X2 X3→X1X2

3 X3cadX3

● The most frequent pair is replaced by a new variable
● Output a dictionary and a compressed sequence

3



Parallel Re-Pair: a parallel variant of Re-Pair

4

1. Breaks the input text into chunks

2. Feed chunks into Re-Pair workers 

3. Workers share the dictionary 
synchronized with lock

4. Workers share the dictionary 
synchronized with lock

t is number of processors



Experiments
● Implemented Parallel Re-pair with Intel Threading Building Blocks
● On quad 18-core Intel Xeon G-6240M 2.6GHz with 12TB RAM
● Compared with pbzip2 (parallel version of bzip2)

Texts Size (MB) Contents

wikimedia 20,442 wikimedia dump

genome 59,765 genome variants

repository 19,466 repository metadata

5
Table 1: Texts used in our experiments



Experimental Results: Compression Time

6Figure 1: Compression Time for each text 

● 7.9 to 10.4 times faster than sequential one with 32 CPUs

15,000

10,000

5,000

15,000

10,000 10,000

5,000 5,000

15,000



Experimental Results: Compression Ratio

7
Table 2: Compression Ratio (t is number of processors)

● Compression ratio of Parallel Re-pair slightly
worsened as number of processors increased

● Parallel Re-pair doesn’t consider block boundaries



Experimental Results: Memory Usage

8
Table 3: Memory Usage (t is number of processors)

● Measured resident set size with “ps” command on all threads
● Almost constant as number of processors increases



Conclusion

● We proposed a parallel variant of Re-Pair
● Our experimental results shows

○ It is 7.9 to 10.4 times faster than sequential one with 32 CPUs
○ Compression ratios are slightly worsened as number of 

processors increased
● Future work

○ Improve compression ratio by considering block boundaries

9


