Applying Practical Parallel
Grammar Compression
to Large-scale Data

Masaki Matsushita and Yasushi Inoguchi
Japan Advanced Institute of Science and Technology

Introduction

e Grammar compression algorithm
o Generates CFG deriving the source text
e Re-pair
o Representative grammar compression algorithm
o Achieves high compression rate for text, graph and tree
o Slower than general compression algorithm in practice
— We addressed this issue with parallel processing.

e Parallel Re-pair: Parallel variant of Re-pair
o Basic implementation was shown in DCC 2021
o In this session, we propose a practical implementation

Sample Application of Re-Pair

e The most frequent pair is replaced by a new variable
e Qutput a dictionary and a compressed sequence

step sequence dictionary
0 abracadabra X1—>ab

1 X1 racadX1 ra X2—>ra

2 X1X2(:adX1X2 X3—>X1X2
3 X3(:adX3

Parallel Re-Pair: a parallel variant of Re-Pair

Data to Compress

i t is number of processors

1. Breaks the input text into chunks | Block 1 Block 2 Block t

(((

2. Feed chunks into Re-Pair workers

add
new pair

synchronized with lock synchronized with lock

compressed file

compressed
strings

Experiments

e Implemented Parallel Re-pair with Intel Threading Building Blocks
e On quad 18-core Intel Xeon G-6240M 2.6GHz with 12TB RAM
e Compared with pbzip2 (parallel version of bzip2)

Texts Size (MB) Contents
wikimedia 20,442 wikimedia dump
genome 99,765 genome variants

repository 19,466 repository metadata

Table 1: Texts used in our experiments

Experimental Results: Compression Time

e 7.91to 10.4 times faster than sequential one with 32 CPUs

Compression Time (seconds)

@ Parallel Re-pair @ pbzp2
15,000

10,000
5,000
O \\‘\
1 2 4 8 16 32
Number of Processors

(a) wikimedia

Compression Time (seconds)

@ Parallel Re-pair @ pbzip2
15,000

10,000
5,000
0
1 2 4 8 16 32
Number of Processors
(b) genome

Compression Time (seconds)

@® Parallel Re-pair @ pbzp2
15,000

10,000
5,000
0 \‘\k
1 2 4 8 16 32
Number of Processors

(c) repository

Figure 1: Compression Time for each text

Experimental Results: Compression Ratio

e Compression ratio of Parallel Re-pair slightly

worsened as number of processors increased
e Parallel Re-pair doesn’t consider block boundaries

Texts pbzip2 | ours | ours | ours | ours ours ours
(t=1) | (t=2) | (t=4) | (t=8) | (t=16) | (t=32)

wikimedia | 8.07 6.43 | 6.66 | 6.90 | 7.18 7.49 7.84

genome 0.71 046 | 048 | 0.49 | 0.50 0.51 0.53

repository | 886 | 11.05 | 11.19 | 11.29 | 11.51 | 11.70 | 11.91

Table 2: Compression Ratio (t is number of processors)

Experimental Results: Memory Usage

e Measured resident set size with “ps” command on all threads
e Almost constant as number of processors increases

Texts pbzip2 | pzbip2 | pzbip2 | pzbip2 ours ours ours ours
(t=1) | (t=2) | (t=8) | (t=32) (t=1) (t=2) (t=8) (t=32)

wikimedia 11.4 23.0 76.2 | 2909 | 571,594.8 | 571,586.0 | 571,607.2 | 571,674.2
genome 12.1 24.0 80.5 | 311.9 | 1,684,568.0 | 1,684,566.7 | 1,684,571.5 | 1,684,631.1
repository 11.2 23.2 782 | 2919 | 544904.2 | 544,897.6 | 544,914.3 | 544,964.6

Table 3: Memory Usage (t is number of processors)

Conclusion

e \We proposed a parallel variant of Re-Pair
e Our experimental results shows
o Itis 7.9 to 10.4 times faster than sequential one with 32 CPUs
o Compression ratios are slightly worsened as number of
processors increased
e Future work
o Improve compression ratio by considering block boundaries

