

A Benchmark of Entropy Coders for the Compression of Genome Sequencing data

S. Casale-Brunet P. Ribeca C. Alberti U. Ozturk M. Mattavelli

DCC 2022

Compression of Short NGS Reads

- Short next-generation sequencing (NGS) reads are highly typically sequenced with high redundancy
 - x20-50 coverage of the original genome is typical
- Sequencing reads contain three fields to be compressed:
 - Read names
 - Quality values
 - Nucleotide sequences
- Nucleotide sequences are easy to compress due to the redundancy arising from high coverage sequencing
- Quality values and read names are difficult to compress due to their noisy nature
 - These typically form >50% of the content of compressed files

- ISO/IEC 23092
- Open standard for the coding genomic data
- Provides a syntax framework for interoperable decoding processes

3

- File is organized into dataset group & datasets
- Unit of granular access are called access units containing descriptors
- Genomic sequencing data is organized into descriptors:
 - Descriptors contain all the necessary information for the reconstruction of genomic reads or alignments

EPFL MPEG-G

FILE

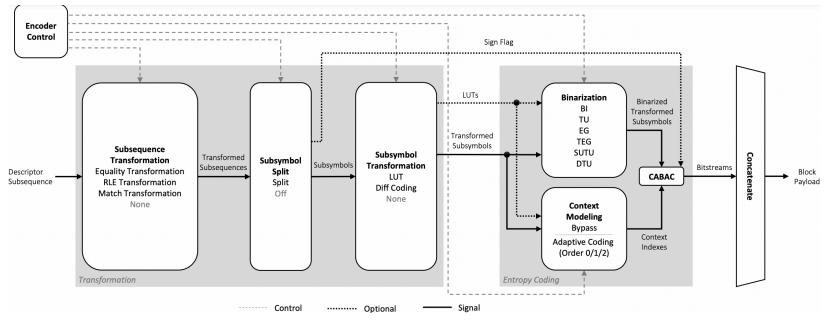

FILE HEADER							
DATASET GROUP							
DATASET GROUP HEADER optional optional							
	DATASET						
	DATASET HEADER DATASET PARAMETER SET MIT optional ••• optional						
	descriptor descriptor descriptor stream stream						
	ACCESS UNIT ACCESS UNIT HEADER optional optional BLOCK BLOCK BLOCK						
	ACCESS UNIT ACCESS UNIT HEADER optional optional BLOCK BLOCK BLOCK						
	ACCESS UNIT ACCESS UNIT HEADER optional optional BLOCK BLOCK BLOCK						
4 -							

Figure 1: MPEG-G File organisation

MPEG-G Compression of Reads

- Second Edition of MPEG-G only supports Context Adaptive Binary Arithmetic Coding (CABAC) for the compression of genomic descriptors
- CABAC is utilised in other MPEG standards (e.g. ISO/IEC 14496) and is very efficient in the video coding
 - Provides high compression rates
- In the context of coding genomic data, CABAC has some limitations:
 - Read names and quality values are noisy, and hence are not as easily compressible
 - CABAC is difficult to parallelise or vectorise

MPEG-G Compression of Reads

6

Figure 2: CABAC Transformation and Entropy Coding

MPEG-G Compression of Reads

- CABAC takes longer times compared to other entropy coders to encode descriptors coding read names and quality values
 - For comparatively little gain in compression rates due to the noisy nature of read names and quality values
- The MPEG-G standard could benefit from supporting low complexity entropy coders
 - Better tradeoff between compression rates and times
 - Sacrifice some compression rate for significant gain in time

- Our Contribution: A benchmark of compression-decompression speeds and compression rates of a set of entropy coders
- Two types of input data:
 - Raw FASTQ: Data gathered in string form directly from FASTQ files
 - MPEG-G uncompressed bitstreams: Data gathered by decompressing a compressed MPEG-G streams:
 - These samples contain both aligned and unaligned data
- Input files are derived from ERR174310.chr9 and G15111.HCC1143.BL.1.chr9 on the MPEG-G database

EPFL

Low Complexity Coder Benchmarks: Methodology

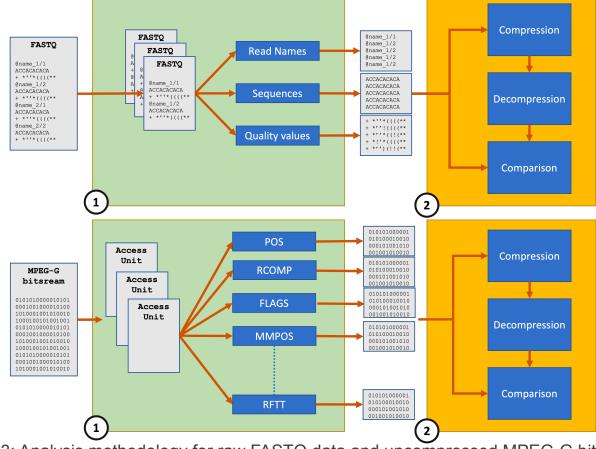
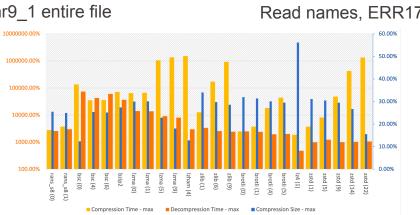
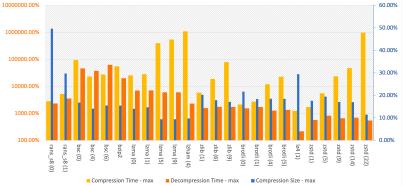
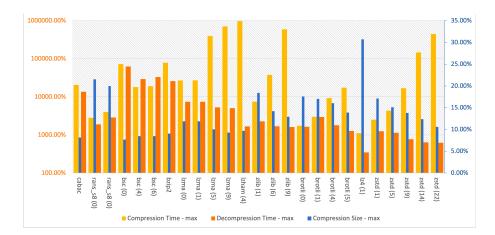



Figure 3: Analysis methodology for raw FASTQ data and uncompressed MPEG-G bitstreams

- Benchmarked entropy coders:
 - rANS (range asymmetric numeral system)
 - bsc (block-sorting compression)
 - bzip2
 - LZMA
 - LZHAM
 - zlib
 - LZ4
 - brotli
 - Zstandard




Quality values, ERR174310_chr9_1 entire file

Nucleotide sequences, ERR174310_chr9_1 entire file

Read names, ERR174310 chr9 1 entire file

Uncompressed MPEG-G bitstream, ERR174310_chr9_1 entire file

Deseriates	Size		
Descriptor	Bytes	Percentage	
POS	6785529	01.0	
RCOMP	76954	00.0	
FLAGS	103692	00.0	
MMPOS	4369137	00.7	
MMTYPE	989515	00.2	
CLIPS	257455	00.0	
JREADS	0	00.0	
RLEN	6316182	01.0	
PAIR	9908072	01.5	
ISCORE	2556072	00.4	
AMAP	0	00.0	
MSAR	0	00.0	
RTYPE	0	00.0	
RGROUP	0	00.0	
QV	542275751	82.2	
RNAME	85735014	13.0	
RFTP	0	00.0	
RFTT	0	00.0	

Description	Size		
Descriptor	Bytes	Percentage	
POS	0	00.0	
RCOMP	0	00.0	
FLAGS	0	00.0	
MMPOS	0	00.0	
MMTYPE	0	00.0	
CLIPS	0	00.0	
UREADS	703106	46.8	
RLEN	10607	00.7	
PAIR	101	00.0	
MSCORE	0	00.0	
MMAP	0	00.0	
MSAR	0	00.0	
RTYPE	0	00.0	
RGROUP	0	00.0	
QV	683051	45.5	
RNAME	104290	06.9	
RFTP	0	00.0	
RFTT	0	00.0	

(a) Item 43

(b) Item 47

Descriptor contribution to the overall bitstream size

Low Complexity Coder Benchmarks: Results

- Complete and detailed results, scripts, and plots are available on:
 - https://github.com/epfl-scistimm/2022-DCC
- Key takeaways from results:
 - CABAC provides higher compression rates, but slow decompression speeds
 - LZ4 provides low compression rates, but is extremely fast both in compression and decompression
 - Zstandard and brotli were the closest codecs to the Pareto frontier in terms of compression-decompression speeds and compression rates
 - bsc provides high compression rates

Low Complexity Coder Benchmarks: Results

- Choose entropy coder according to the use case:
 - High throughput: LZ4
 - Archival purposes: bsc
 - General/generic compression: zSTD
 - Different kinds of genomic data can be compressed with different coders
- Benchmark results were used to propose the integration of support for various entropy coders to the third edition of the MPEG-G standard