Data Compression Conference (DCC) 2022

High-fidelity 3D Model Compression based on Key Spheres

Yuanzhan Li, Yuqi Liu, Yujie Lu, Siyu Zhang, Shen Cai*, and Yanting Zhang Visual and Geometric Perception Lab, Donghua University, Shanghai, CHINA *Corresponding author: hammer_cai@163.com Idea in One Sentence

Using rough shape information to make shape fitting easier

Background

Traditional 3D Object Representations

[1] Turk, Mark. The Stanford Bunny. www.cc.gatech.edu

Signed Distance Field (SDF)

[2] J. Park, et al, "DeepSDF: Learning continuous signed distance functions for shape representation," in CVPR, 2019.

Traditional 3D Reconstructions

• PC of each frame (Laser) $\rightarrow \rightarrow$ stitched PCs [3]

triangulation epipolar matching Delauney triangulation

• Images (Camera) $\rightarrow \rightarrow \rightarrow$ sparse PC $\rightarrow \rightarrow \rightarrow$ dense PC $\rightarrow \rightarrow \rightarrow$ dense mesh [4]

ICP&fusionMarching CubeDepth images (Kinect) $\rightarrow \rightarrow \rightarrow$ TSDF volume $\rightarrow \rightarrow \rightarrow$ mesh [5]

[3] P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," in TPAMI, 14(2), 239-256, 1992.
[4] Schonberger, J. L., and J. M. Frahm, "Structure-from-Motion Revisited," in CVPR, 2016.

[5] R. A. Newcombe, et al., "KinectFusion: Real-time dense surface mapping and tracking," in ISMAR, 2011.

3D Reconstructions from Image(s) Utilizing Neural Networks

• Single view $\rightarrow \rightarrow$ mesh [6] / voxel or volume [7]

• Stereo views $\rightarrow \rightarrow$ matched image points $\rightarrow \rightarrow$ PC (depth map) [8]

• Multiple views $\rightarrow \rightarrow \rightarrow \text{cost volume} \xrightarrow{\text{prediction}} \text{PC (depth map) [9]}$

• MLP fitting Marching Cube • Multiple views $\rightarrow \rightarrow$ density volume $\rightarrow \rightarrow$ mesh [10][11] (NeRFs)

3D Reconstructions from Image(s) Utilizing Neural Networks

[6] N. Wang, et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images," in ECCV, 2018.

[7] L. Mescheder, et al, "Occupancy Networks: Learning 3D Reconstruction in Function Space," in CVPR, 2019.

[8] R. Chabra, et al, "StereoDRNet: Dilated Residual StereoNet," in CVPR, 2019.

[9] Y. Yao, et al, "MVSNet: Depth Inference for Unstructured Multi-view Stereo," in ECCV, 2018.

[10] B. Mildenhall, et al, "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis," in ECCV, 2020.

[11] A. Yu, et al, "Plenoxels: Radiance Fields without Neural Networks," in ArXiv, 2021.

Neural Implicit Reconstructions from 3D Models ----- DeepSDF [2]

- SDFs of one category models $\rightarrow \rightarrow \rightarrow$ SDF of a trained or new object
- The first work to introduce the auto-decoder method in 3D learning
- One code (latent) vector for each object

[2] J. Park, et al, "DeepSDF: Learning continuous signed distance functions for shape representation," in CVPR, 2019.
[12] V. Sitzmann, et al, "Implicit Neural Representations with Periodic Activation Functions," in NIPS, 2020.
[13] M. Tancik, et al, "Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains," in NIPS, 2020.

Neural Implicit Reconstructions from 3D Models ----- ONet [7] / IM-Net [14]

- Voxels of one category objects $\rightarrow \rightarrow \rightarrow$ occupancy of one trained object
- The encoder-decoder architecture without latent vectors
- Represent the 3D surface as the continuous decision boundary of a deep neural network classifier

[7] L. Mescheder, et al, "Occupancy Networks: Learning 3D Reconstruction in Function Space," in CVPR, 2019.[14] Z. Chen and H. Zhang, "Learning Implicit Fields for Generative Shape Modeling," in CVPR, 2019.

Neural Implicit Reconstructions from 3D Model ----- NI [15]

- SDF of one model $\rightarrow \rightarrow \rightarrow$ SDF of this model
- The global overfitting scheme for each model (traditional compression way)
- Very small network (with 7553 paras.) and effective for simple objects

[15] T. Davies, et al, "Overfit Neural Networks as a Compact Shape Representatio" (2020.9), "On the Effectiveness of Weight-Encoded Neural Implicit 3D Shapes" (2021.1), in arXiv.

Neural Implicit Reconstructions from 3D Model ----- NGLOD [16]

- Follow the basic process of NI, but using local fitting instead of global fitting
- Learn latent vectors for vertices of octree and interpolate them to get point feature
- One-layer network and a lot of latent vectors (depending on different level in LOD)
- More effective for objects with moderate complexity, compared to NI

[16] T. Takikawa, et al, "Neural geometric level of detail: Real-time rendering with implicit 3d shapes," in CVPR, 2021.

Other Overfitting Reconstructions for Image or Scene

- Image $\rightarrow \rightarrow \rightarrow$ Image [17]
- Images $\rightarrow \rightarrow \rightarrow$ Scene [10] [11] (NeRFs)
- Similarity: MLP networks, global/local fitting, and w./w.o. latent vectors

[17] Y. Strumpler, et al, "Implicit Neural Representations for Image Compression," in ArXiv, 2021.

Motivation

Spheres Representation of 3D Models

- Discrete but concise
- Extract spheres from SDF
- More effective than PC and voxel for 3D object classification

[18] Hui Cao, Haikuan Du, Siyu Zhang, Shen Cai*. "Inspherenet: a concise representation and classification method for 3d object," in MultiMedia Modeling (MMM), 2020.

Sphere-Node Graph of 3D Models

- Revise the method of extracting spheres
- Connect sphere nodes to form a graph (suitable for GNNs)
- More effective object classification under low resolution

[19] Siyu Zhang, Hui Cao, Yuqi Liu, Shen Cai*, Yanting Zhang, Yuanzhan Li, and Xiaoyu Chi, "Sn-graph: A minimalist 3d object representation for classification," in ICME, 2021. (oral presentation)

Birth of This Idea

- Interior spheres or SN-Graph is visually attracted, so objects can be easily recognized.
- Except classification, what else can the spheres representation do? (2020.06)
- If rough shape information is obtained, SDF fitting will be easier. (2020.11)

Spheres indicate upper and lower bounds of local SDF for most regions of object.

Overfitting

Ground Truth SDF

Key Spheres SDF

Detailed Problems

- How to embed the spheres information into neural network? We try two simple ways
- Global fitting or local fitting?

Global fitting is enough for complex objects

• How much improvement in reconstruction accuracy can this fitting lead to? Significant

Overfitting

Key Spheres SDF

Ground Truth SDF

Fitting Comparison with NI and NGLOD

Key Spheres SDF

Key Spheres based 3D Model Compression

Basic Process

GT model

reconstructed model

Key Spheres Extraction ----- Different Resolution

32 key spheres

512 key spheres

Key Spheres Extraction ----- Different Models

45.1%

23.1%

Key Spheres Feature Extraction and Aggregation

- One layer 4*29 MLP promoting sphere feature to 29 dimensions
- Linear weighted aggregation

$$\mathbf{y}_i = \sum_{j=1}^M (w_{ij} * \mathbf{z}_j), \quad \text{with } w_{ij} = d_{ij} / \sum_{j=1}^M d_{ij}, \quad \text{where } d_{ij} = 2 * rad(\mathcal{S}_j) + dis(\mathbf{x}_i, \mathbf{c}_j).$$

Key Spheres Feature Extraction and Aggregation

- 29 dimensions latent vector representing each sphere feature
- The same linear weighted aggregation

$$\mathbf{y}_{i} = \sum_{j=1}^{M} (w_{ij} * \mathbf{z}_{j}), \quad \text{with } w_{ij} = d_{ij} / \sum_{j=1}^{M} d_{ij}, \quad \text{where } d_{ij} = 2 * rad(\mathcal{S}_{j}) + dis(\mathbf{x}_{i}, \mathbf{c}_{j}).$$

$$N \times (3 + 29)$$

$$Latent Point Feature Extraction$$

$$w_{i1}$$

$$y_{i}$$

$$u_{ij}$$

$$W_{ij}$$

Whole Network Architecture

- Concat of point coordinate and aggregation feature from key spheres
- MLP used for global SDF fitting

Experiments

Datasets & Metrics

• Thingi32 / Thing10K / ShapeNet150 (planes, chairs, and cars)

 Surface error / importance error / Chamfer distance (CD) / intersection over union (IOU)

Visual Comparison with Three Other Methods

Numerical Comparison with NI

Former: NI

Latter: Ours w. DPFE branch & 128 spheres

Surface error (times 10,000) on Thingi32

Numerical Comparison with NI

Histograms of surface and importance errors of on Thingi10K dataset

Visual Comparison with NI

Numerical Comparison with NGLOD and Other Methods

Mathad	Storage	Storage ShapeNet150		Thingi32	
Method	(KB)	gIoU	CD	gIoU	CD
DeepSDF	7186	86.9	0.316	96.8	0.053
FFN	2059	88.5	0.077	97.7	0.033
SIREN	1033	78.4	0.381	95.1	0.077
NI	30	82.2	0.5	96	0.092
NGLOD:	06	94 C	0.242	06.9	0.070
(LOD1)	90	84.0	0.343	90.8	0.079
(LOD2)	111	88.3	0.198	98.2	0.041
(LOD3)	163	90.4	0.112	99	0.030
(LOD5)	1356	91.7	0.062	99.4	0.027
OURS:	20	02.0	0 1 9 9	08.6	0.020
(32)	- 50	95.8	0.100	98.0	0.028
(128)	42	93.8	0.138	98.6	0.029
(512)	93	94.1	0.124	98.5	0.031
(512^*)	158	95.9	0.060	99.2	0.025

Ours with LPFE branch

Visual Comparison with NGLOD (LOD-1)

OUR

GT

Visual Comparison at Various Resolutions

Visualization of Reconstructed Thingi32

Visualization of Reconstructed Planes in ShapeNet150

Visualization of Reconstructed Chairs in ShapeNet150

Visualization of Reconstructed Cars in ShapeNet150

Compression Rate under High-fidelity Reconstruction

Method	Thingi32 (mean size 221K)	ShapeNet150-Planes (mean size 181K)	
NI	29.2:1	23.9:1	
NGLOD (LOD-1)	25.2:1	20.7:1	
Ours w. DPFE & 32 spheres	33.2:1 (finer detail)	27.2:1	
Ours w. DPFE & 128 spheres	31.4:1	25.7:1 (more robust)	
Ours w. LPFE & 32 spheres	29.1:1	23.9:1	
Ours w. LPFE & 128 spheres	20.5:1	16.8:1	

Conclusion & Future Work

Conclusion

• A hybrid model reconstruction method w. explicit key spheres & implicit MLP

- Prior spheres + MLP global fitting = fine reconstruction quality & high compression rate
- Big network is not proper for some tasks, especially on neural compression. (personal opinion)

Future Work

- Improve the feature aggregation method (e.g., transformer)
- Encode edge information of the rough shape
- Two stages training for very complex objects
- Revise the fitting target to others, rather than SDF
- Adaptive networks for different models

Data Compression Conference (DCC) 2022

Yuanzhan Li

Yuqi Liu

Yujie Lu

Siyu Zhang

advisors:

Shen Cai

Yanting Zhang

Visual and Geometric Perception Lab, Donghua University, Website: <u>www.cscvlab.com</u> Source code: <u>https://github.com/cscvlab/3D-Objects-Compression</u>