
Neural JPEG: End-to-End Image Compression Leveraging a
Standard JPEG Encoder-Decoder

Ankur Mali?, Alexander G. Ororbia†, Daniel Kifer ?, C. Lee Giles?

? The Pennsylvania State University, University Park, PA, 16802, USA

†Rochester Institute of Technology, Rochester, NY, 14623, USA

Abstract

Recent advances in deep learning have led to superhuman performance across a variety
of applications. Recently, these methods have been successfully employed to improve the
rate-distortion performance in the task of image compression. However, current methods
either use additional post-processing blocks on the decoder end to improve compression
or propose an end-to-end compression scheme based on heuristics. For the majority of
these, the trained deep neural networks (DNNs) are not compatible with standard encoders
and would be difficult to deply on personal computers and cellphones. In light of this,
we propose a system that learns to improve the encoding performance by enhancing its
internal neural representations on both the encoder and decoder ends, an approach we call
Neural JPEG. We propose frequency domain pre-editing and post-editing methods to opti-
mize the distribution of the DCT coefficients at both encoder and decoder ends in order to
improve the standard compression (JPEG) method. Moreover, we design and integrate a
scheme for jointly learning quantization tables within this hybrid neural compression frame-
work.Experiments demonstrate that our approach successfully improves the rate-distortion
performance over JPEG across various quality metrics, such as PSNR and MS-SSIM, and
generate visually appealing images with better color retention quality.

Introduction

Over the years there has been a rapidly increasing use of the world wide web, propelled
by the ever growing popularity of social media, to transmit visual signals, e.g., pictures
and video, of ever rising resolution and quality. As a result, there is an equally
increasing need to improve our ability to compress visual data.

Recently, in response to this problem, research in deep neural networks (DNNs)
has begun to turn its attention to improving the rate-distortion performance of im-
age compression frameworks. Current efforts have presented impressive results with
end-to-end image compression systems using DNNs in a variety of ways [1, 2, 3].
Although powerful, these systems require carefully designing and training effective
encoding/decoding functions as well as quantizers. Other methods perform post-
editing and apply DNNs in an attempt to reduce the compression artifacts on the
decoder end [4, 5]. Though this set of approaches has yielded impressive results, they
unfortunately require a specifically trained decoder during the post-processing stage
or a complex DNN-based decoder. As such they are not supported by the commonly
used image viewers in most computers and smartphones. In addition, there is no
guarantee that the compression results uncovered would hold when the input data
distribution shifts, e.g., images of a completely different kind are presented to the sys-
tem, presenting a challenge to DNN-driven approaches. Recent approaches that craft

ar
X

iv
:2

20
1.

11
79

5v
2

 [
ee

ss
.I

V
]

 3
1

Ja
n

20
22

hybrid decoders [6, 7, 8] have presented a very promising direction, yet they struggle
to operate well at the lowest bit rate, given that the quantized signals they must work
with to reconstruct the original input signal are extremely sparse. Another promising
alternative is to design a hybrid encoder that enhances encoder signals resulting in
better compression even at the lowest bit rates [9, 10]. However, these methods fail
to remove artifacts at the decoder end, thus compromising compression quality in
various situations.

In the spirit of the recent efforts to construct DNN-driven compression system,
this paper proposes a simple approach to overcome the above mentioned shortcomings
by handcrafting an image encoder-decoder system that exploits the inherent sparsity
in quantization space while plugging into an existing image method. Specifically, we
focus on the most common and widely-used standard image compression method,
JPEG, though our framework is general enough that it could be leveraged/extended
to work with others, e.g., JP2 or PGF. In this study, our approach improves the rate-
distortion performance of JPEG by enhancing the latent representations acquired
by its neural encoder and decoder by efficiently learning the DCT coefficients while
at the same time ensuring that the bitstreams are decodable even with a standard
decoder. Specifically, we construct a system that leverages an encoder and decoder
that are each driven by sparse recurrent neural networks (SMRNNs) trained within
the effective framework of neural iterative refinement [6] – the recurrent encoder learns
to “pre-edit” an input image in the frequency domain (producing values that serve as
the necessary DCT coefficients) while the recurrent decoder learns to reduce artifacts
in the reconstructed image. To further boost our rate-distortion performance at the
lowest bitrate, we overcome the limitations of handcrafted codecs built into JPEG and
JPEG-2000, which rely on quantization driven by fixed transformation matrices and
entropy encoding, by developing a scheme that jointly learns the quantization table
with the recurrent encoder. As a result, since our approach learns the quantization
table, the entire hbyrid system could be viewed as a differentiable JPEG pipeline.

In summary, our contributions are as follows:
• We extend on prior work and improve system rate-distortion performance by

optimizing the JPEG encoder in the frequency domain.
• We facilitate better coefficient construction at the decoder end by optimizing

the JPEG decoder.
• A sparse recurrent network (Neural JPEG) is adapted to learn how to edit the

DCT coefficients at both decoder and encoder ends.
• A learnable quantization table that is optimized jointly with the sparse recurrent

encoder/decoder to improve rate-distortion performance, yielding an end-to-
end, differentiable JPEG compression system.

Related Work

Widely-used lossy image compression methods such as JPEG and JPEG-2000 (JP2)
employ a combination of fixed transformations using entropy-based encodings to
achieve better compression [11]. This is suitable for real-time processing when mem-
ory and computational efficiency are needed. Recently, DNN approaches have been

shown to outperform these traditional methods in the task of image compression
[12, 13]. However, most of this work has focused on designing end-to-end systems
that reconstruct images in a two-dimensional space using architectural building-block
models [14] such as auto-encoders , convolutional networks, and recurrent networks.
Some early work crafted a framework based on variational autoencoders [15] that re-
sults in improve rate-distortion. Other complementary work [16, 17, 18] , which out-
performed classical techniques (at low bit rates) without harming perceptual quality,
set the widely-adopted practice for using deep artificial neural networks (ANNs) in
compression. Later methods that followed focused on using convolutional networks
or generative adversarial networks (GANs) [19, 1, 20, 21]. Recent work has used
spatial-temporal energy compaction [2], other energy compaction-based techniques
[22], and filter-bank-based convolution networks [23]. Most of these end-to-end so-
lutions have been designed to extract better latent representations and/or eliminate
redundancies in the compression process. A more straightforward compression ap-
proach considered redundancy at the decoder side of the system and attempted to
decompress by designing an iterative hybrid recurrent decoder [6, 7, 8]. Similarly, a
standard encoder can be replaced with another DNN to enhance the model’s internal
neural representations and decode information while only using a standard decoder
both in the pixel [24] and frequency domains [10].

Neural JPEG

0.1 The JPEG Algorithm

We start by briefly introducing the workflow of the JPEG algorithm. The first step
employs conversation of the input image from RGB to the YCbCr colorspace. Next,
the image I (of size N ×M pixels) is divided into N non-overlapping blocks of size
Ni × Mi pixels. The discrete cosine transform (DCT) is then applied to convert
each block into the frequency domain. We denote the DCT coefficients of any given
block (n,m), where n ∈ 0...(N/Ni) and m ∈ 0...(M/Mi), for the luminance channel
Y with F(Y) = I[n,m] ∈ R8×8 and accordingly for chrominance channels Cb,Cr.
Furthermore, the DCT or DWT (in JPEG 2000) coefficients are quantized using two
quantization tables: Q(L) ∈ R8×8 for the luminance channel Y and Q(C) ∈ R8×8 for
the chrominance channels Cb,Cr followed by a rounding function:

Ẑ(Y)
u,v =

⌊
F

(Y)
u,v

Q
(L)
u,v

⌉
, Ẑ(Cb)

u,v =

⌊
F

(Cb)
u,v

Q
(C)
u,v

⌉
, Ẑ(Cr)

u,v =

⌊
F

(Cr)
u,v

Q
(C)
u,v

⌉
, for u, v ∈ [1, 8]. (1)

Finally, these quantized DCT coefficients are passed to an entropy coding module to
finish compressing the input image.

0.2 The Neural JPEG Architecture

Our complete Neural JPEG architecture, which integrates elements from [25] and [6],
leverages a recurrent encoder model EΘ(I) that drives/interacts with the encoder of
standard JPEG, a differentiable quantization table and rounding module, and a recur-
rent decoder model DΘ(Ẑ) that drives/interacts with the decoder of standard JPEG.

Image
Compresse

d Image

Vgg-19 (Pre-
trained) –
32x32x256

256->128

32x32x8x8x
2 tensor

YCbCr

FDCT

DCT
Coefficient

1x1
Conv

sigmoid

Sparsity
map with
2nd order
RNN or
MRNN per
channel

Hadamard
product

Learnable
quantization
table [1-255]

YCbCr-RGB

IDCT

DCT
Coefficient
(approx.)

Differentiable
rounding

Iterative
refinement
steps

Hybrid
Decoder

Figure 1: The end-to-end Neural JPEG architecture for image compression.

All of these components/modules are optimized jointly yielding a one-time training
end-to-end differentiable JPEG pipeline. A graphical representation of the proposed
Neural JPEG is depicted in Figure 1. Formally, the Neural JPEG architecture can
be summarized as the following functions:

Ẑ = Eθ(I), Î = Dθ(Ẑ) =⇒ Î = Dθ(Eθ(I)). (2)

where Î and Ẑ represents the reconstructed image and quantized DCT coefficients
respectively.

Editing with Sparse RNNs: Inspired by [26] and [10], we design an approach that
uses a neural models to either pre-edit (or iteratively process) an image I before the
quantization step of JPEG or post-edit the inverse DCT coefficients before converting
back to the reconstructed image Î. Specifically, for pre-editing, our neural encoder
EΘ(I) proceeds according to the following steps to produce a set of “edit” weights:

1. Run I through vision model H′ = DS(fV (I; ΘV)), where DS() is the down-
sampling operator. Note that fV in this paper was chosen to be a pre-trained
VGGNet-19 [27] and ΘV are its parameters. A 1×1 convolution is then applied
to H′ to reduce its channel dimension to 128 and the final output is H = σ(H′)
where σ is the sigmoid activation function to limit the output values to the range
[0, 1]. The 128 output channels of H are finally reshaped to a 8× 8× 2 tensor
for each block which is then split into two 8 × 8 matrices (one for luminanace
and one for chrominance), i.e., HL and HC .

2. Use the sparse multiplicative RNN (SM-RNN) component to process both HL

and HC (in parallel) for K steps (which is the process of iterative refinement,
adapted from [6], using the multiplicative RNN model proposed in [28]). This

SM-RNN produces the desired activation map according to the dynamics:

fLk = diag(WfHL) · (Vfz
L
k−1) (3)

zLk = φ(Vzf
L
k + WzHL),where k = 0, 1, ..., K (4)

where the above equation is simply repeated for HC (just replace L in Equation
4 with C) and K = 3 in this paper. The final set of sparse “edit” values are
produced via the following:

cL = kWTA(UzLK), cC = kWTA(UzCK) (5)

where kWTA() is the k winners-take-all function (setting all values that are less
than the k greatest neurons are set to zero).

Note that the above is repeated for each of the N ·M blocks. Before applying our
quantization table, we multiply each DCT coefficient produced by the original JPEG
encoder by its corresponding edit score obtained from the above process.

For the decoder end of our system, we utilize a SM-RNN similar to the encoder
process described above but tie its weights to those of the SM-RNN encoder module
(both models would have the same dimensionalities for their parameters given they
operate in the same internal latent space). In short, after applying the inverse DCT
transform to the outputs of the quantization table and rounding modules (which
produce Ẑ), the SM-RNN decoder takes in the Ẑ, processes it K times (in a process
similar to the one depicted above) and finally produces the reconstructed image Î.

A Learnable Quantization Table and Rounding Module: In line with prior
work [10] we also use the differentiable JPEG pipeline to learn the quantization tables.
We replace attention mechanism with sparse RNN to better capture the importance
of each representation associated with each channel. We use Q

(L)
θ and Q

(C)
θ as opti-

mization variables for luminance and chrominance. The range of quantization table
values are clipped to [1, 255] which helps in optimization process.Our overall approach
in this stage is as follows:

Ẑ(Y)[n,m] =

⌊
F(Y)[n,m]� SMRNN (L)[n,m]� Q̄

(L)
θ

⌉
approx

Ẑ(Cr)[n,m] =

⌊
F(Cr)[n,m]� SMRNN (C)[n,m]� Q̄

(C)
θ

⌉
approx

Ẑ(Cb)[n,m] =

⌊
F(Cb)[n,m]� SMRNN (C)[n,m]� Q̄

(C)
θ

⌉
approx

for n ∈ [1, N],m ∈ [1,M],

with Q̄(L)
u,v =

1

Q
(L)
u,v

, Q̄(C)
u,v =

1

Q
(C)
u,v

, for u, v ∈ [1, 8].

(6)

Here � represents hadamard product. This The modification introduced above loses
some features and is not recoverable at decoder end. Multiplying the DCT coeffi-
cients by a number ≤ 1 acts like a frequency filter, suppressing the higher frequency

to get low-pass filter. By combining sparse weights with the DCT-coefficient we
get a smoothing filter that is spatially adaptive and also applicable across various
frequencies.

For the rounding module, we remove the entropy encoding used in JPEG and
replace the hard rounding operation with a differentiable 3rd order approximation:

bẐeapprox = bẐe+ (bẐe − Ẑ)3. (7)

0.3 Loss Formulation

For designing end-to-end framework one needs to find a efficiently optimize for rate-
distortion tradeoff. Additionally we introduced alignment loss that is responsible for
controlling hybrid decoder. For any given input image x and the reconstructed image
x̂, and learned parameters θ, our loss function has the general form as follows:

L(x, x̂; θ) = λ · d(x, x̂) + (1− λ− 0.01)r(x, x̂; θ) + 0.01al(x, x̂),

with x, x̂ ∈ {t ∈ R | 0 ≤ t ≤ 255}8N×8M×3, λ ∈ R+,
(8)

where al(x, x̂; θ) is alignment loss, r(x, x̂; θ) is rate loss and d(x, x̂) is distortion loss.
The parameter λ determines the ratio of the triplet loss and hence balances alignment,
distortion and rate. The ideal value for λ is obtain based on validation performance.

0.3.1 The Distortion Loss

The distortion loss is responsible for measuring similarity between compressed and
original images. To achieve this we use the combination MSE and LPIPS as follows:

d(x, x̂) = MSE(x, x̂) + γ · LPIPS(x, x̂) (9)

where we introduce γ as the LPIPS modulating factor.

0.3.2 The Rate Loss

We use the rate loss formulation proposed by [10] by replace attention map with
sparse map obtained from SMRNN that is represented as follows:

r(x; θ) = α(‖Q̄(L)
θ ‖1 + ‖Q̄(C)

θ ‖1) + β(mean(SMRNN
(L)
θ (x)) + mean(SMRNN

(C)
θ (x)))

(10)

with the mean function: mean(SMRNN) =
1

|P|
∑

~p∈P SMRNN~p, where P is the

index set over all entries in the tensor SMRNN .

0.3.3 Alignment Loss

The aligment loss is ensuring signals are robust at decoder end. To achieve this we
propose using combination of MSE and Mean Absolute Error (MAE) as follows:

al(x, x̂) = (1− σ)MSE(x, x̂) + σ ·MAE(x, x̂) (11)

where σ = [0.1−0.4] (values chosen based on validation set). Based on the triplet loss
definitions above we can pose the optimization objective as: min

θ
L(x,Dθ(Eθ(x)); θ).

Experiments

0.4 Evaluation Metrics

We use widely used compression optimization metric for measuring image similarity
the Mean Squared Error (MSE) and the Peak Signal to Noise Ratio (PSNR). Similarly
to [29, 10] we define the MSE and PSNR for the tensors x, x̂ ∈ hcalX of arbitrary
dimension as follows (x is also the input image I):

MSE(x, x̂) =
1

|P|
∑
~p∈P

(x~p − x̂~p)2

PSNR(x, x̂) = 10 log10

(
2552

MSE(x, x̂)

) (12)

where P is the set of pixel indices and x~p, x̂~p ∈ [0, 255], ∀ ~p ∈ P . To better
measure the visual appeal of images we also use the Multi-Scale Structural Similarity
(MS-SSIM) [30], converted to a logarithmic scale as follows:

MS-SSIM [dB] = −10 log10(1−MS-SSIM) (13)

Additionally, we also use DNN-friendly the Learned Perceptual Image Patch Similar-
ity (LPIPS) [31] objective function.

0.5 Datasets and Training Procedure

The Neural JPEG network is trained on the dataset provided in prior work [32, 10].
It consists of 3640 HDR images. For training, we use the merged HDR images and
extract image patches of size 256 obtained from random cropping. We follow the
same extraction process and experimental protocol proposed by [10] We evaluate our
model on the Kodak dataset, consisting of 24 uncompressed images of size 768× 512.
Additionally, we validate our model on validation set from DIV2K [33, 34] containing
100 high quality images with 2040 pixels. Our model is optimized using Adam with
initial learning rate 1.0 reduced to 10−8 using polynomial decay. We use batch size
of 32 for all experiments and performed grid search to find optimal hidden sizes for
SMRNN, sparsity level k, and λ. We use pre-trained VGG-19 model (trained on
ImageNet) and fine-tune these layers while training. The 1 × 1 convolutional layer
is initialized using orthogonal matrices. We follow prior experimental protocol [10],
hence the quantization table variables in this work are also initialized uniformly in
the interval [1s, 2s] and are limited to be in the range [1s, 255s]. Where the scaling
factor is always s > 0 and in this experiments is set to is a s = 10−5. Then we
can get the final quantization tables by multiplying factor by s−1. We use standard
evaluation metrics such as PSNR, MSE, MS-SSIM to report our model performance.

Result and Discussion

We evaluated our model on 2 out of 6 benchmarks used in prior work [6] using 3 met-
rics [35]. These metrics are Peak Signal to Noise Ratio (PSNR), structural similarity

Bits Per Pixel

PS
N

R

24

26

28

30

0.15 0.20 0.25 0.30 0.35

JPEG Hybrid Encoder Hybrid Decoder Neural JPEG

Figure 2: Performance of various compression model with various bit rate setting

(SSIM), and multi-scale structural similarity (MS-SSIM [36], or MS3IM . We com-
pare our model against wide variety of compression approaches such pure neural-based
GOOG[17] and E2E [12]. We also compare to the models of [6] and [10]. Results are
reported in Table 2 – we see all models perform stably, however, when the bit rates are
reduced (see Table 1) all hybrid models start struggling, whereas neural-based models
stay consistent. This suggests that the performance of these hybrid models is limited
due to the fixed map used by JPEG. This support our hypothesis that at lower bit
rates enhancing JPEG signals further improves performance and that Neural JPEG
does this efficiently. Our model does struggles due to some artifacts, but these can be
removed with JPEG artifact removal and we note that our overall model ensures the
structure/content of image is kept intact. In other words, whenever we operate at the
lowest bit rates (see Figure 2), JPEG completely loses image information while the
Neural JPEG makes up the difference since it can recover majority of missing chunks
of features. Since JPEG quality based on PSNR at 0.25bpp is equivalent to Neural
JPEG image quality at 0.19bpp, we conclude that even at the lowest bit rates, our
model tries to remember majority of the signal.

Conclusions and Future Work

Our experiments show that our approach, Neural JPEG, improves JPEG encoding
and decoding through sparse RNN smoothing and learned quantization tables that
are trained end-to-end in an differentiable framework. The proposed model leads to
better compression/reconstruction at lowest bit rates when evluated using metrics

Table 1: Test results for Kodak (bpp 0.38), 8-bit Compression Benchmark (CB, bpp, 0.371)

Kodak CB 8-Bit
Model PSNR SSIM MS3IM PSNR SSIM MS3IM
JPEG 31.2190 0.7412 0.9011 32.7893 0.7921 0.9009
GOOG-JPEG 30.9821 0.7415 0.9016 31.899 0.7967 0.9012
E2E (Neural) 30.3471 0.7521 0.9021 31.769 0.8001 0.9016
MLP -JPEG 27.8325 0.8399 0.9444 27.8089 0.8371 0.9475
∆-RNN -JPEG 28.5093 0.8411 0.9487 28.0461 0.8403 0.9535
GRU -JPEG 28.5081 0.8400 0.9474 28.0446 0.8379 0.9533
Hybrid Decoder - JPEG 31.1282 0.7413 0.9011 32.7100 0.7920 0.9010
Hybrid Encoder 31.512 0.7520 0.9021 31.6712 0.8002 0.9016
Neural JPEG (Ours) 31.732 0.7521 0.9022 32.400 0.7926 0.9012

Table 2: Test results for Kodak (bpp 0.37), 8-bit Compression Benchmark (CB, bpp, 0.341)

Kodak CB 8-Bit
Model PSNR SSIM MS3IM PSNR SSIM MS3IM
JPEG 27.6540 0.7733 0.9291 27.5481 0.8330 0.9383
GOOG-JPEG 27.9613 0.8017 0.9557 27.8458 0.8396 0.9562
E2E (Neural) 28.9420 0.8502 0.9600 28.0999 0.8396 0.9562
MLP -JPEG 27.8325 0.8399 0.9444 27.8089 0.8371 0.9475
∆-RNN -JPEG 28.5093 0.8411 0.9487 28.0461 0.8403 0.9535
GRU -JPEG 28.5081 0.8400 0.9474 28.0446 0.8379 0.9533
Hybrid Decoder - JPEG 28.5247 0.8409 0.9486 28.0461 0.8371 0.9532
Hybrid Encoder 28.8920 0.8411 0.9488 27.9211 0.8374 0.9534
Neural JPEG (Ours) 29.5247 0.8413 0.9489 27.8009 0.8375 0.9535

such as MSE, PSNR and also using perceptual metrics (LPIPS, MS-SSIM) that are
known to be much closer to human perception. Most importantly, the improved
encoder-decoder remains entirely compatible with any standard JPEG algorithm but
produces significantly better colors than standard JPEG. We have shown that we can
achieve improvement without directly estimating the entropy of the DCT coefficients,
only regularizing the sparse maps and quantization tables. In the future, we wish to
design an improved decoder that learns quantized signals from each color channel
and uses a distribution-specific quantization table instead of a single differentiable
quantization table.

References

[1] Oren Rippel and Lubomir D. Bourdev, “Real-time adaptive image compression,” in
ICML, 2017, pp. 2922–2930.

[2] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto, “Learning image
and video compression through spatial-temporal energy compaction,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 10071–10080.

[3] Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu Timofte, “Learning for video
compression with hierarchical quality and recurrent enhancement,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[4] Tingting Wang, Mingjin Chen, and Hongyang Chao, “A novel deep learning-based
method of improving coding efficiency from the decoder-end for HEVC,” in Proceedings
of the Data Compression Conference (DCC). IEEE, 2017, pp. 410–419.

[5] Tingting Wang, Wenhui Xiao, Mingjin Chen, and Hongyang Chao, “The multi-scale
deep decoder for the standard HEVC bitstreams,” in Proceedings of the Data Com-
pression Conference (DCC). IEEE, 2018, pp. 197–206.

[6] A. G. Ororbia, A. Mali, J. Wu, S. O’Connell, W. Dreese, D. Miller, and C. L. Giles,
“Learned neural iterative decoding for lossy image compression systems,” in DCC,
March 2019, pp. 3–12.

[7] A. Mali, A. G. Ororbia, and C. L. Giles, “The sibling neural estimator: Improving
iterative image decoding with gradient communication,” in DCC, 2020, pp. 23–32.

[8] Ankur Mali, Alexander G. Ororbia, Dan Kifer, and C. Lee Giles, “An empirical analysis
of recurrent learning algorithms in neural lossy image compression systems,” in 2021
Data Compression Conference (DCC), 2021, pp. 356–356.

[9] Zhenyu Liu, Xianyu Yu, Yuan Gao, Shaolin Chen, Xiangyang Ji, and Dongsheng Wang,
“Cu partition mode decision for HEVC hardwired intra encoder using convolution
neural network,” IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5088–
5103, 2016.

[10] Yannick Strümpler, Ren Yang, and Radu Timofte, “Learning to improve image com-
pression without changing the standard decoder,” arXiv preprint arXiv:2009.12927,
2020.

[11] S. Takamura and M. Takagi, “Lossless image compression with lossy image using
adaptive prediction and arithmetic coding,” in DCC, March 1994, pp. 166–174.

[12] Johannes Ballé, Valero Laparra, and Eero P Simoncelli, “End-to-end optimized image
compression,” in Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2017.

[13] George Toderici, Sean M. O’Malley, Sung Jin Hwang, Damien Vincent, David Minnen,
Shumeet Baluja, Michele Covell, and Rahul Sukthankar, “Variable rate image compres-
sion with recurrent neural networks,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2016.

[14] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu, “Pixel recurrent
neural networks,” in ICML, 2016, pp. 1747–1756.

[15] Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, and Daan Wier-
stra, “Towards conceptual compression,” in NIPS, pp. 3549–3557. 2016.

[16] George Toderici, Sean M. O’Malley, Sung Jin Hwang, Damien Vincent, David Min-
nen, Shumeet Baluja, Michele Covell, and Rahul Sukthankar, “Variable rate image
compression with recurrent neural networks,” CoRR, vol. abs/1511.06085, 2015.

[17] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen,
Joel Shor, and Michele Covell, “Full resolution image compression with recurrent
neural networks,” CoRR, vol. abs/1608.05148, 2016.

[18] Nick Johnston, Damien Vincent, David Minnen, Michele Covell, Saurabh Singh, Troy
Chinen, Sung Jin Hwang, Joel Shor, and George Toderici, “Improved lossy image
compression with priming and spatially adaptive bit rates for recurrent networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 4385–4393.

[19] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár, “Lossy image
compression with compressive autoencoders,” CoRR, vol. abs/1703.00395, 2017.

[20] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston,
“Variational image compression with a scale hyperprior,” in Proceedings of the Inter-
national Conference on Learning Representations (ICLR), 2018.

[21] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Tim-
ofte, Luca Benini, and Luc V Gool, “Soft-to-hard vector quantization for end-to-end
learning compressible representations,” in Advances in Neural Information Processing
Systems (NeurIPS), 2017, pp. 1141–1151.

[22] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Energy compaction-based image
compression using convolutional autoencoder,” IEEE Transactions on Multimedia,
pp. 1–1, 2019.

[23] S. Li, Z. Zheng, W. Dai, and H. Xiong, “Lossy image compression with filter bank
based convolutional networks,” in DCC, March 2019, pp. 23–32.

[24] Hossein Talebi, Damien Kelly, Xiyang Luo, Ignacio Garcia Dorado, Feng Yang, Pey-
man Milanfar, and Michael Elad, “Better compression with deep pre-editing,” IEEE
Transactions on Image Processing, vol. 30, pp. 6673–6685, 2021.

[25] Richard Shin, “JPEG-resistant adversarial images,” 2017.

[26] Hossein Talebi, Damien Kelly, Xiyang Luo, Ignacio Garcia Dorado, Feng Yang, Peyman
Milanfar, and Michael Elad, “Better compression with deep pre-editing,” 2020.

[27] Karen Simonyan and Andrew Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[28] Ilya Sutskever, James Martens, and Geoffrey Hinton, “Generating text with recurrent
neural networks,” Madison, WI, USA, 2011, ICML’11, p. 1017–1024, Omnipress.

[29] Lukas Cavigelli, Pascal Hager, and Luca Benini, “CAS-CNN: A deep convolutional
neural network for image compression artifact suppression,” 2017 International Joint
Conference on Neural Networks (IJCNN), May 2017.

[30] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image
quality assessment,” in The Thrity-Seventh Asilomar Conference on Signals, Systems
Computers, 2003, 2003, vol. 2, pp. 1398–1402 Vol.2.

[31] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” 2018.

[32] Sam Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T. Barron, Florian
Kainz, Jiawen Chen, and Marc Levoy, “Burst photography for high dynamic range
and low-light imaging on mobile cameras,” SIGGRAPH Asia, 2016.

[33] Eirikur Agustsson and Radu Timofte, “Ntire 2017 challenge on single image super-
resolution: Dataset and study,” 07 2017, pp. 1122–1131.

[34] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, Lei Zhang, Bee
Lim, et al., “Ntire 2017 challenge on single image super-resolution: Methods and re-
sults,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, July 2017.

[35] Kede Ma, Qingbo Wu, Zhou Wang, Zhengfang Duanmu, Hongwei Yong, Hongliang Li,
and Lei Zhang, “Group MAD competition? A new methodology to compare objective
image quality models,” in CVPR, 2016, pp. 1664–1673.

[36] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Trans. Image Process-
ing, vol. 13, no. 4, pp. 600–612, 2004.

	0.1 The JPEG Algorithm
	0.2 The Neural JPEG Architecture
	0.3 Loss Formulation
	0.3.1 The Distortion Loss
	0.3.2 The Rate Loss
	0.3.3 Alignment Loss

	0.4 Evaluation Metrics
	0.5 Datasets and Training Procedure

