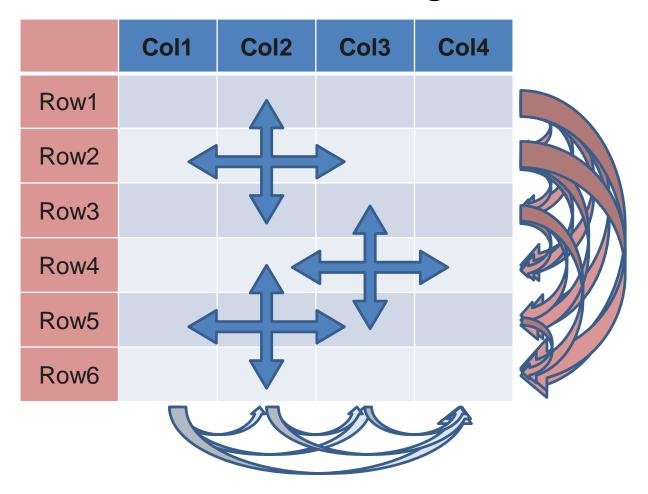
SortComp (Sort-and-Compress) -- Towards a Universal Lossless Compression Scheme

-- Towards a Universal Lossless Compression Scheme for Matrix and Tabular Data

Xizhe CHENG, Sian-Jheng LIN, Jie SUN cheng.xizhe@huawei.com


Theory Lab.,
Hong Kong R&D Center,
Huawei Technologies Co. Ltd.

To Compress Tabular Data

2D Tabular Data Storage

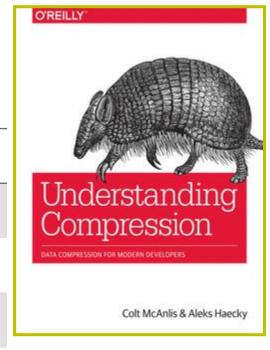
☐ A Great Amount of Data can be 2-Dimensional

Spread sheets, pictures, relational database files ...

□ Tabular Data Characteristics

Data dependencies along both rowwise and column-wise directions;

☐ Posing Challenges to General-Purpose Data Compression Algorithm


General-purpose data compression algorithms assume 1D nature of the datastream, losing track of the columnwise data dependencies;

Data Locality Matters

This leads us to a very important place in the compression world, the concept that locality matters.⁴ As data is created in a linear fashion, there's a high probability that

Column-Major Traversing **Row-Major Traversing** Col1 Col2 Col4 Col1 Col2 Col3 Col4 Col3 Row1 Row1 Row2 Row2 Row3 Row3 Row4 Row4 Row5 Row5 Row6 Row6

Which one to choose?

□ Different traversing strategies suits different data localities the best

Related Works

■ Table Compressors Based on Row-Reordering

Daniel Lemire, Owen Kaser, and Eduardo Gutarra, "Reordering rows for better compression: Beyond the lexicographic order," *ACM Trans. Database Syst.*, vol. 37, no. 3, Sept. 2012.

- Improving column-wise locality
- Getting the optimal strategy == TSP

Table Compressors Based on Exploiting Column Dependencies Yihan Gao and Aditya Parameswaran, "Squish: Near-optimal compression for archival of relational datasets," in *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, New York, NY, USA, 2016, KDD '16, p. 1575–1584, Association for Computing Machinery.

Column-wise dependencies not utilized

■ Entry-wise Predictors

Pictures: PNG

HPC Data: fpzip, spdp

Applicable only to specific types of 2D data, relies heavily on the pre-assumptions of the datasets

SortComp: A Toy Example

Sorted Table

Table

Permutation

Job Level	Base	Bonus	
Junior	11000	2200	
Junior	12000	2400	
Junior	10000	2000	
Junior	13000	2600	
Senior	24000	4800	
Junior	14000	2800	
Senior	25000	5000	

Job Base Bonus Level Junior Junior Junior Junior Junior Senior Senior

Job Level	Base	Bonus
1	2	2
2	3	3
3	1	1
4	4	4
6	6	6
5	5	5
7	7	7

Intra-	Junior → 0
Corre	Senior → 1
-Column lations	Column Difference

Job

Level

Job

Leve1

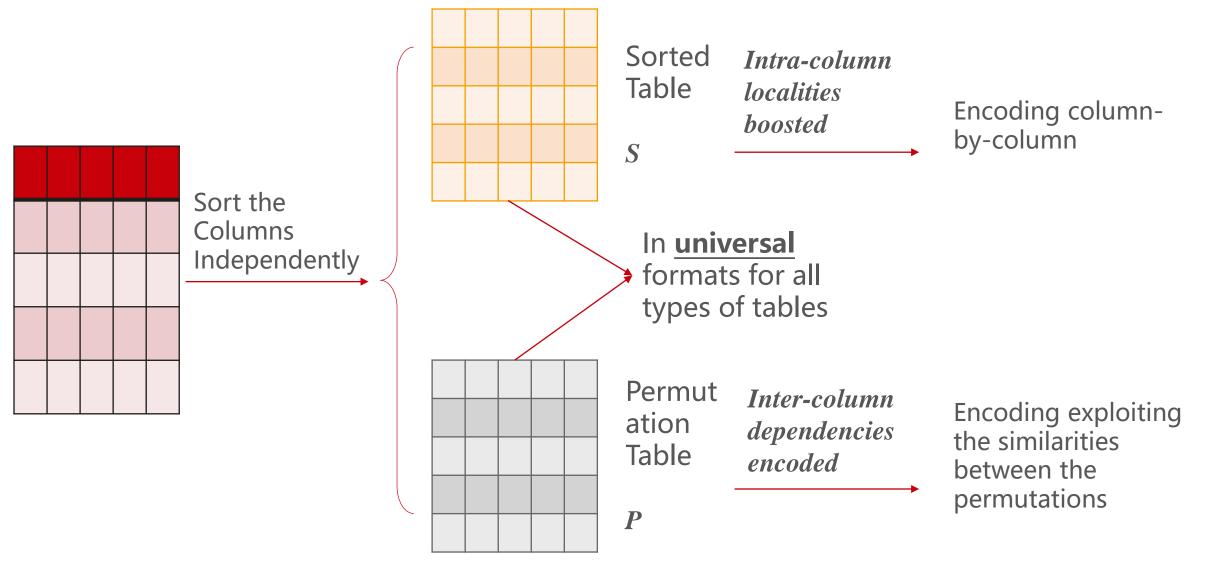
-1

Base

Base

-2

Bonus


Bonus

ر د	In		
י+ב[סייים	iter-Coi	Job Level – Identity Base – Job Level	
ions	Column	Bonus - Base	

_
<u>.</u>
ယ
0
H.
4

SortComp: Towards A Universal Scheme

Table w/ One Column Emitted by an i.i.d Source

> SortComp compresses the table to the theoretical limit (ensured by Shannon Entropy) asymptotically.

Lemma 3. Given an integer sequence $a = \{a_1, a_2, a_n\}$ with $1 \le a_i \le N, \forall 1 \le i \le n$, N = o(n), drawn from an i.i.d source π . Assume permutation vector $\sigma = \{l_1, l_2, ..., l_n\}$ sorts a to $b = \{b_1, b_2, b_n\}$. Then as n goes to infinity, b and σ can be encoded with a total length of $nH(\pi)$ bits.

Lemma 2. Given an integer sequence $a = \{a_1, a_2, a_n\}$ with $1 \le a_i \le N, \forall 1 \le i \le n$, drawn from an i.i.d stationary source. Denote the average of the drawn sequence as λ , i.e. $\frac{\sum_{i=1}^{n} a_i}{n} = \lambda$, then it stands:

Geometric Dist.

$$H(a) \le 1 + \log \lambda,\tag{1}$$

Table w/ One Column Emitted by an i.i.d Source

> SortComp compresses the table to the theoretical limit (ensured by Shannon Entropy) asymptotically.

Lemma 3. Given an integer sequence $a = \{a_1, a_2, a_n\}$ with $1 \le a_i \le N, \forall 1 \le i \le n$, N = o(n), drawn from an i.i.d source π . Assume permutation vector $\sigma = \{l_1, l_2, ..., l_n\}$ sorts a to $b = \{b_1, b_2, b_n\}$. Then as n goes to infinity, b and σ can be encoded with a total length of $nH(\pi)$ bits.

Lemma 2. Given an integer sequence $a = \{a_1, a_2, a_n\}$ with $1 \le a_i \le N, \forall 1 \le i \le n$, drawn from an i.i.d stationary source. Denote the average of the drawn sequence as λ , i.e. $\frac{\sum_{i=1}^{n} a_i}{n} = \lambda$, then it stands:

Geometric Dist.

$$H(a) \le 1 + \log \lambda,\tag{1}$$

Two Columns

Compress column-by-column + utilizing inter-column dependencies boost the compression ratio
noise, measurement error, ...

Theorem 1. Given two columns $A^{(i)}$ and $A^{(j)}$ of table A, assume $A^{(j)} = g(A^{(i)}) + \beta$ where β is a random variable. Then given $P^{(i)}$, $P^{(j)}$ can be encoded with a total length of $n + n \log O(\frac{d(g(A^{(i)}), A^{(j)})}{n})$, where d refers to the Kendall Tau distance.

- Recall: The information of any permutation P with length n is $nO(\log n)$
- Space save: $O(\log \frac{n^2}{d(g(A^{(i)}), A^{(j)})}$ bits for each entry

Can be small if β is small

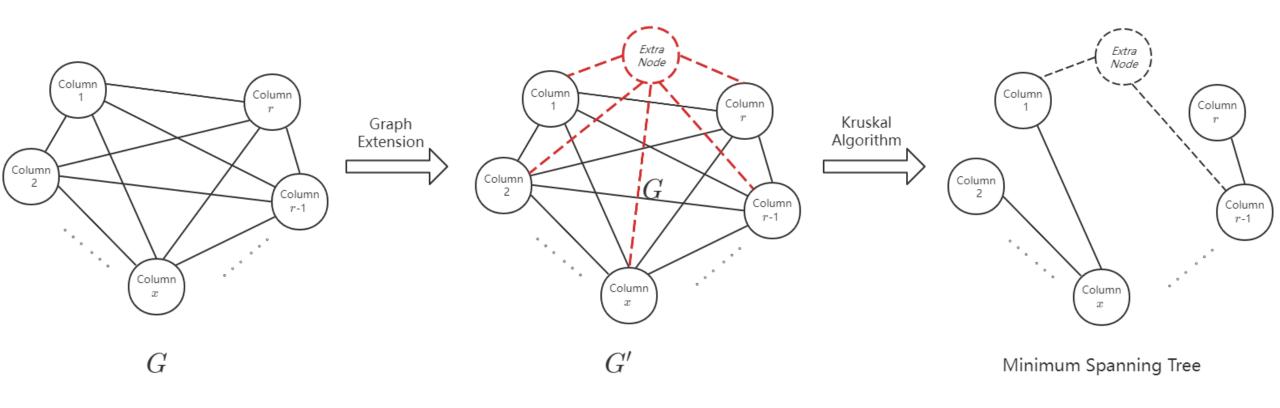
Column 1	Column 2
1	15
2	20
3	25
4	27
5	28
6	27
7	30
8	34

Almost in the same order

Contribute to Kendall-Tau distance

Encoding Routine: (1). Compute the composite permutation $P = P^{(i)^{-1}} \circ P^{(j)}$; (2). Compute the Lehmer code L = L(P); (3). Entropy-encode the Lehmer code L.

Multi-Column Optimization: A Graph Approach


Table $T \longleftrightarrow Graph G$

Column *C*→Node *v*

Edge $v_1v_2 \longrightarrow$ code length of v_2 based on v_1

Extended Graph $G' = G \cup extra v'$

Edge $v'v \longleftrightarrow code$ length of v

Experiments

Table 1: Experimental Compression Ratios of Different Algorithms

File Name	Gzip Row/Col	zstd Row/Col	SortComp	Spartan
Citibike	5.05/5.54	11.62/8.56	15.61	NA
Sanfrancisco Salaries	2.92/3.61	4.17/4.92	4.75	NA
Sales Data	3.76/7.63	5.67/8.92	12.87	NA
911 Calls	4.24/5.45	11.51/9.13	12.47	NA
Levels Fyi Salary	4.42/6.21	7.96/9.43	$\boldsymbol{9.97}$	NA
NYC Accidents 2020	4.47/5.99	9.31/9.02	$\boldsymbol{9.69}$	NA
Forest Cover	6.02/9.81	9.15/ 18.16	11.01	10.00
Corel	3.55/3.80	5.07/5.54	6.41	3.48

