u]
‘ @
n
it

Jarno Alanko

12

Nicola Cotumaccio 3

Nicola Prezza

4
LUniversity of Helsinki, Finland

2Dalhousie University, Halifax, Canada

3GSSI, L'Aquila, Italy

4Ca’ Foscari University, Venice, ltaly

DA

Wheeler automata

Wheeler automata generalize the nice properties of De Bruijn graphs.

@ A Wheeler automaton on the alphabet ¥~ with n states and e edges
can be stored using only
2(e+n)+n+elog|X|+ |X|loge+ o(n+ elog |X|) bits.

@ This representation allows to decide whether a string o matches the
automaton in only O(|a|log|X]|) time.

Alanko, Cotumaccio, Prezza 2/24

@ Wheeler automata are automata endowed with a total order < on
the set of all states.

label.

@ We assume that all edges entering the same state have the same

@ Here are the properties that the total order < must satisfy.

start —|

DA
3/24

The initial state is the first state.

DA
4/24

All states reached by a come before all states reached by b, which come
before all states reached by c...

Qe
5/24

Equally-labeled edges must respect the total order (think of (7,3, a)
(9,4,a), (6,23,d), (15 25,d))

DA
6/24

Minimization

@ We know that if a language is recognized by some deterministic
automaton, then there exists exactly one deterministic automaton
recognizing the language and having the minimum number of states
(the minimum automaton).

@ It can be proved that the same holds true in the Wheeler case: if a
language is recognized by some deterministic Wheeler automaton,
then there exists exactly one deterministic Wheeler automaton
recognizing the language and having the minimum number of states
(the minimum Wheeler automaton).

Alanko, Cotumaccio, Prezza 7/24

Minimization

@ Minimizing a deterministic Wheeler automaton (that is, building the
minimum Wheeler automaton starting from a given Wheeler
automaton) allows to retain the same information using less space
and without affecting the running time of pattern matching queries.

@ It was known how to minimize a deterministic Wheeler automaton in
O(nlog n) time.

@ In our paper, we prove that minimization can be performed in linear
time.

Alanko, Cotumaccio, Prezza 8/24

SRl e ey
F k@:/ F/

Only consecutive states are collapsed.

DA
10 /24

Only states reached by the same label are collapsed.

DA
11/24

Only Nerode-equivalent states are collapsed.

DA
12 /24

Minimization

@ It can be proved that this all we have to do to obtain the minimum
Wheeler automaton: collapsing the maximal runs of consecutive
states reached by the same label and being Nerode equivalent.

@ Since Nerode-equivalent states can be computed in O(nlog n) time
using Hopcroft's algorithm, we conclude that we can minimize a
deterministic Wheeler automaton in O(nlog n) time.

Alanko, Cotumaccio, Prezza 13 /24

Minimization

e We want to develop a linear time algorithm.

o Notice that the bottleneck of the O(nlog n) time algorithm is
Hopcroft's algorithm.

@ However, since we know that equivalent states must be consecutive
in the linear order, it will suffice to determine all pairs of consecutive
elements which are NOT equivalent (for example (15, 16) is a pair of
non-equivalent states, while (23,24) is a pair of equivalent states).

Alanko, Cotumaccio, Prezza 14 /24

Pairs of consecutive elements reached by distinct labels (for example
(8,9)) are non-equivalent.

(24,25) | (14,15) (17.18)(20 o)) [(23.24)

DA
15 /24

same label.

@@

b
+a
b
start —|
c

We create a graph with all pairs of consecutive elements reached by the

a d
(OB

DA
16 /24

start —|

Now we only have to check which pairs are Nerode equivalent.

DA
17 /24

Pairs such that one state if final and the other is non-final (for example
(5,6)) are non-equivalent and marked orange.

(24,25) | (14,15) (17.18)(20 o)) [(23.24)

DA
18 /24

Pairs such that some label leaves one state but not the other (for example
(16,17)) are non-equivalent and marked orange.

(24,25) | (14,15) (17.18)(20 o)) [(23.24)

DA
19 /24

@ Pairs such that one can reach a pair of non-equivalent states by a
common letter are also non-equivalent.

@ To this end, create edges between pairs in a backward fashion (for
example, (10,11), (2, 3)).

@ All pairs reachable by an already marked pair are marked blue.

b
a
,
b
start —|
a

EER AT (G

[m]

=

DA
20/24

Non-marked pairs yield the equivalent states.

@0
e
e a

DA
21/24

@ The minimization algorithm is correct.

@ The graph of all pairs has linear size because each pair has at most
one outgoing edge.

@ The graph of all pairs can be built in linear time.

@ Reachability can be determined in linear time.

DA
22 /24

github.com/nicolaprezza/dBg-min

dataset in (x10%) [out (x10°) [reduction | time (s) | nodes/s (x10°)
cere.fasta 19.004 15.756 17.1% 17 1.118
influenza.fasta 6.469 4.792 25.9% 5 1.294
para fasta 28.178 22.556 19.9% 26 1.084
ecoli.fastq 449.92 220.47 51% 398 1.130
human fastq 650.51 438.68 32.6% 600 1.084
ecoli__pruned 317.173 201.940 36% 291 1.089
human_ pruned ‘ 449.991 ‘ 387.627 13.8% 431 1.044

DA
23 /24

github.com/nicolaprezza/dBg-min

u]
‘ @
n
it

Jarno Alanko

12

Nicola Cotumaccio 3

Nicola Prezza

4
LUniversity of Helsinki, Finland

2Dalhousie University, Halifax, Canada

3GSSI, L'Aquila, Italy

4Ca’ Foscari University, Venice, ltaly

DA

