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Matching Statistics

The matching statistics MS of a pattern P[1..m] with respect to a text
T[1..n] is an array of integers MS[1..m] such that the i-th entry MS][/]
stores the length of the longest prefix of P[i..m] that occurs in T.

For example, given that T[1..8] ="aaabbbcc” and P[1..5] ="ccabb”, the
matching statistics MS[1..5] = {2,1,3,2,1}.



Related Work

Space ‘ Time ‘ Reference
O(n) O(mlgo) Textbook
(nlgo + o(nlg o)) bits O(mlgo) Enno et al.
O(r+ S(n)) O(m - f(n)) Bannai et al.
O(z + S(n)) O(m?lg" z+ m- f(n)) New
O(zlgz+ S(n)) O(m? + mlgzlglgz+ m- f(n)) New
O(zlgz + e 7 lg”! z + S(n)) O(m?Iglgo + m- f(n)) New
O(zlgz+ S(n)) O(m? + m - f(n)) o is constant

e z is the num of phrases in the Lempel-Ziv Parsing, while r is the
num of runs in BWT.

e Assume that there is a data structure of S(n) words of space to
support retrieving any substring T[i..i + ¢] in O(f(n) + £) time.

o r=0(zlg’n).



Preliminaries

Text[1..16] = A|AB|ABB|B|ABA|ABAB|BB

Phrases | Phrases,., | Suffixes
Al A |AB|ABB|B|ABA|ABAB|BB
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ABB | BBA |B|ABA|ABAB|BB
B|B |ABA|ABAB|BB
ABA | ABA |ABAB|BB
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Preliminaries: Partner Findin
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e Operation partner(v\u) can be
implemented by 2D orthogonal
range succ/prec queries.

e String ABAB appears in the

text, AABABBBABAABABBB,
but string ABABA does not;
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Naive Method for Computing MS[1..m]

e Query pattern P[1..m] is split
into m — 1 pairs of prefix and
suffix pairs.

e Consider the i-th pair, P[1..i]
and P[i+ 1, m];

e For each ancestor, u, of
lociy (i), find partner(u\locix(i))

e Overall, we have
St i = O(m?) partner (or
LCP) queries.

e Query Time:

O(m? + mf(n) + m? g 2).

e Space Cost: O(z + S(n)) words

of space.
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e The number, occ, of LPMEMs for P[1..m] is at most (7).
e MS can be computed in O(m + occ) time —Algorithm 2.
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Second Method: Query Algorithms

e Apply heavy path
decomposition on Tg,f.

e Foreach 1 < f < k= 0(lgz),
set ar = partner(te\locii(i))
and Br = partner(wr\lociy(i));

e ay and partner(ay\lociy(i))
induce a LPMEM; so do 3¢ and
partner(f3¢\loci»(i)): Lemma
6;

e If uand v are induced together,

and if v stays between ws and
tr, then u stays between af
and 3r: Lemma 7.
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Second Method: Preprocessing

e wy and hp_leaf (wr) are known
during the preprocessing stage;

e tr and Jocix(i) are unknown,
but partner(u\locir(i)) =
partner(u\hp_leaf (wr)) =
partner(u\tf): Lemma 8;

e «ayf and (3r are unknown, but we
can use the induced subtree
Trev(Wf)-
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Trev(wy)

& . .
hi b f ae cd j g a e ¢C bhp,leaf(wf)J h f d i
e Leaves in T, that are induced with wr are called special leaves.

e T, (wr) contains the special leaves and their LCAs (special nodes).

® >, Ispecial(wr)| = O(zlg 2).
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Second Method: Induced Subtree T, (wy)

Trew (w./)

g . .
hi b f ae cd j g aerhp,leaf(wf)thdl

Leaves in T, that are induced with wy are called special leaves.

T,ev(wr) contains the special leaves and their LCAs (special nodes).

> w, Ispecial(wr)| = O(zlg 2).
The left endpoint of a LPMEM always stays at a special internal
node: Lemma 9.
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e Each special internal node U in T, (ws) stores a pointer, e,
pointing to U’ = partner(U/hp_leaf (wf)) in Tgyr.
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Second Method: Induced Subtree T, (wy)

B & ¢ bhp,leaf(wf)J

e Each special internal node U in T, (ws) stores a pointer, e,
pointing to U’ = partner(U/hp_leaf (wf)) in Tgyr.
e Each special internal node U stores another pointer, ep:
e Given a pair of parent and child nodes, O and L, if L does not induce
with O’, then pointer e of L points to O.
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Second Method: Induced Subtree T, (wy)

wi/Q (L[R!

a e ¢ bhp,leaf(u;f)J

e Each special internal node U in T, (ws) stores a pointer, e,
pointing to U’ = partner(U/hp_leaf (wf)) in Tgyr.
e Each special internal node U stores another pointer, ep:
e Given a pair of parent and child nodes, O and L, if L does not induce
with O’, then pointer e of L points to O.
e Otherwise, its ey points to the same node as of its lowest ancestor
that has a valid ep.
13



Second Method & Open Problems

e The second method:
o Query Time: O(m* + mf(n) + mlgzlglg z).
e Space Cost: O(zlgz + S(n)) words of space.
e Open Problems:
e Query Time: O(m - f(n))
e Space: O(zlgz + S(n)) or even O(z + S(n))?
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