Computing Matching Statistics on Repetitive
Texts

Younan Gao

Faculty of Computer Science, Dalhousie University, Canada

Matching Statistics

The matching statistics MS of a pattern P[1..m] with respect to a text
T[1..n] is an array of integers MS[1..m] such that the i-th entry MS][/]
stores the length of the longest prefix of P[i..m] that occurs in T.

For example, given that T[1..8] ="aaabbbcc” and P[1..5] ="ccabb”, the
matching statistics MS[1..5] = {2,1,3,2,1}.

Related Work

Space ‘ Time ‘ Reference
O(n) O(mlgo) Textbook
(nlgo + o(nlg o)) bits O(mlgo) Enno et al.
O(r+ S(n)) O(m - f(n)) Bannai et al.
O(z + S(n)) O(m?lg" z+ m- f(n)) New
O(zlgz+ S(n)) O(m? + mlgzlglgz+ m- f(n)) New
O(zlgz + e 7 lg”! z + S(n)) O(m?Iglgo + m- f(n)) New
O(zlgz+ S(n)) O(m? + m - f(n)) o is constant

e z is the num of phrases in the Lempel-Ziv Parsing, while r is the
num of runs in BWT.

e Assume that there is a data structure of S(n) words of space to
support retrieving any substring T[i..i + ¢] in O(f(n) + £) time.

o r=0(zlg’n).

Preliminaries

Text[1..16] = A|AB|ABB|B|ABA|ABAB|BB

Phrases | Phrases,., | Suffixes
Al A |AB|ABB|B|ABA|ABAB|BB
AB | BA |ABB|B|ABA|ABAB|BB
ABB | BBA |B|ABA|ABAB|BB
B|B |ABA|ABAB|BB
ABA | ABA |ABAB|BB
ABAB | BABA |BB

MM

m=mmm ma<m<<m<mmM@M
poamaana @O0 qommmam< < m <
<M<sMMM</M<
<m<mmmAm

<m<mmm <m<<m<mmm
-
3
&
Mm
[an]
m m
< m
MM
< < m
M <M M
@ N < M
m < < <
< m @dm /[
A m @M< <«
< m MM <
3 < < <@ o
Tr MM MM < M
< < << dn
P mm < <mm
2]
Z m<m< A<M
m < < M
B B
P <m< <M<
.) -

iminaries

Prel

[aafa)

A<Amm/ m<m<<<m<MmMmMmM
MM MAE g i < -
<m<mmm<m< -
<m<mmm
<m<mmm <m<<m<mmm

ABABBBABAABABBB
ABBBABAABABBB
BABAABABBB

ABAABABBB
BB

ABABBB

mm < <mMmmMm
m<m< A</

m < <M
m m
< m< <M<

mm

Sop=zatooya m<m<<m<mmm
oMo M AM8 s ammmam<<m< -
<m<mmm<m< -
<m<mmm

ABABBB <m<<m<mmm

)
v

r(1

partne
Teuf

o0
nm
=
LL
5
c &~
= ” mm <
— o
v} % m<m<
Q X
m <
m
m <M<

Preliminaries: Partner Findin

> W=
>

> W w

> W w

e Operation partner(v\u) can be
implemented by 2D orthogonal
range succ/prec queries.

e String ABAB appears in the

text, AABABBBABAABABBB,
but string ABABA does not;

[selivelivelis-giveli g’ Slve oS

[selivelivelie vl
B ool Sve Bve ool Sve lle U v ANt Lo

B vl g gl v - goe lov Blov e s

oIS = 00 B>

[selivelivelis-silvelie-gie-sllve e Sl os)

Naive Method for Computing MS[1..m]

e Query pattern P[1..m] is split
into m — 1 pairs of prefix and
suffix pairs.

lo ig (Z)

Tsuf 8

Naive Method for Computing MS[1..m]

e Query pattern P[1..m] is split
into m — 1 pairs of prefix and
suffix pairs.

e Consider the i-th pair, P[1..i]
and P[i+ 1, m];

lo ig (Z)

Tsuf 8

Naive Method for Computing MS[1..m]

e Query pattern P[1..m] is split
. . . Partner
into m — 1 pairs of prefix and

suffix pairs.

e Consider the i-th pair, P[1..i]
and P[i+ 1, m];

e For each ancestor, u, of
lociy (i), find partner(u\locix(i))

lo iz (Z)

Tiuf

Naive Method for Computing MS[1..m]

e Query pattern P[1..m] is split
into m — 1 pairs of prefix and
suffix pairs.

e Consider the i-th pair, P[1..i]
and P[i+ 1, m];

Partne

e For each ancestor, u, of
lociy (i), find partner(u\locix(i))

Naive Method for Computing MS[1..m]

e Query pattern P[1..m] is split
into m — 1 pairs of prefix and
suffix pairs.

e Consider the i-th pair, P[1..i]
and P[i+ 1, m];

e For each ancestor, u, of
lociy (i), find partner(u\locix(i))

Partner

Naive Method for Computing MS[1..m]

e Query pattern P[1..m] is split
into m — 1 pairs of prefix and
suffix pairs.

e Consider the i-th pair, P[1..i]
and P[i+ 1, m];

e For each ancestor, u, of
lociy (i), find partner(u\locix(i))

Partner

Naive Method for Computing MS[1..m]

e Query pattern P[1..m] is split
into m — 1 pairs of prefix and
suffix pairs.

e Consider the i-th pair, P[1..i]
and P[i+ 1, m];

e For each ancestor, u, of
lociy (i), find partner(u\locix(i))

Partner

Lo iQ (7,)

Te uf 8

Naive Method for Computing MS[1..m]

e Query pattern P[1..m] is split
into m — 1 pairs of prefix and
suffix pairs.

e Consider the i-th pair, P[1..i]
and P[i+ 1, m];

e For each ancestor, u, of
lociy (i), find partner(u\locix(i))

Partner
lo iQ (Z)

Tur 8

Naive Method for Computing MS[1..m]

e Query pattern P[1..m] is split
into m — 1 pairs of prefix and
suffix pairs.

e Consider the i-th pair, P[1..i]
and P[i+ 1, m];
e For each ancestor, u, of
lociy (i), find partner(u\locix(i))
e Overall, we have
St i = O(m?) partner (or
LCP) queries.

Partner
lo iQ (Z)

Tsuf 8

Naive Method for Computing MS[1..m]

e Query pattern P[1..m] is split
into m — 1 pairs of prefix and
suffix pairs.

e Consider the i-th pair, P[1..i]
and P[i+ 1, m];

e For each ancestor, u, of
lociy (i), find partner(u\locix(i))

e Overall, we have
St i = O(m?) partner (or
LCP) queries.

e Query Time:

O(m? + mf(n) + m? g 2).

Partner
lo iQ (Z)

Tur 8

Naive Method for Computing MS[1..m]

e Query pattern P[1..m] is split
into m — 1 pairs of prefix and
suffix pairs.

e Consider the i-th pair, P[1..i]
and P[i+ 1, m];

e For each ancestor, u, of
lociy (i), find partner(u\locix(i))

e Overall, we have
St i = O(m?) partner (or
LCP) queries.

e Query Time:

O(m? + mf(n) + m? g 2).

e Space Cost: O(z + S(n)) words

of space.

Partner
lo iQ (Z)

Tiur 8

Second Method: LPMEM

Pll.i] = anwwz Pli+1.m] = zychd. y

lociy (7) locis (i)

Second Method: LPMEM

Pll.] = anwwz

lociq (1)

TEXT = - - -

Pli+1..m] = xyycF e

ZOCiQ (L)

LPMEM
/4

ijza:yy

Second Method: LPMEM

Pll.4] = anwwz Pli+1.m] = xyycP e
lociy (1) locia(7)
LPMEM
/
TEXT = - ~~eh1wzxyyf~ -

z
w
w Tev TSU
b e c f
Starting ending

e The number, occ, of LPMEMs for P[1..m] is at most (7).

Second Method: LPMEM

Pll.4] = anwwz Pli+1.m] = xyycP e
lociy (1) locia(7)
LPMEM
/
TEXT = - ~~eh1wzxyyf~ -

z
w
w Tev TSU
b e c f
Starting ending

e The number, occ, of LPMEMs for P[1..m] is at most (7).
e MS can be computed in O(m + occ) time —Algorithm 2.

Second Method: Query Algorithms

e Apply heavy path .
decomposition on Tg,f.

Second Method: Query Algorithms

e Apply heavy path

decomposition on Tg,f.

e Foreach 1 <f < k= 0(lgz),
set ar = partner(tr\lociy(i))
and Br = partner(wr\lociy(i));

Second Method: Query Algorithms

e Apply heavy path
decomposition on Tg,f.

e Foreach1 < f < k= 0(lgz),
set ar = partner(tr\lociy(i))

and Br = partner(wr\lociy(i));

e «ay and partner(ay\loci(i))
induce a LPMEM; so do ¢ and
partner(f3¢\loci»(i)): Lemma
6;

Second Method: Query Algorithms

e Apply heavy path
decomposition on Tg,f.

e Foreach 1 < f < k= 0(lgz),
set ar = partner(te\locii(i))
and Br = partner(wr\lociy(i));

e ay and partner(ay\lociy(i))
induce a LPMEM; so do 3¢ and
partner(f3¢\loci»(i)): Lemma
6;

e If uand v are induced together,

and if v stays between ws and
tr, then u stays between af
and 3r: Lemma 7.

Second Method: Preprocessing

e wy and hp_leaf (wr) are known
during the preprocessing stage;

11

Second Method: Preprocessing

e wy and hp_leaf (wr) are known
during the preprocessing stage;

e tr and Jocix(i) are unknown,
but partner(u\locir(i)) =
partner(u\hp_leaf (wr)) =
partner(u\tf): Lemma 8;

11

Second Method: Preprocessing

e wy and hp_leaf (wr) are known
during the preprocessing stage;

e tr and Jocix(i) are unknown,
but partner(u\locir(i)) =
partner(u\hp_leaf (wr)) =
partner(u\tf): Lemma 8;

e «ayf and (3r are unknown, but we
can use the induced subtree
Trev(Wf)-

11

Second Method: Induced Subtree T, (wy)

Trev(wy)

g . .
hi b f ae cd j g aerhp,leaf(wf)thdl

e Leaves in T, that are induced with wr are called special leaves.

12

Second Method: Induced Subtree T, (wy)

Trev(wy)

g . .
hi b f ae cd j g aerhp,leaf(wf)thdl

e Leaves in T, that are induced with wr are called special leaves.

e T, (wr) contains the special leaves and their LCAs (special nodes).

12

Second Method: Induced Subtree T, (wy)

Trev(wy)

& . .
hi b f ae cd j g a e ¢C bhp,leaf(wf)J h f d i
e Leaves in T, that are induced with wr are called special leaves.

e T, (wr) contains the special leaves and their LCAs (special nodes).

® >, Ispecial(wr)| = O(zlg 2).

12

Second Method: Induced Subtree T, (wy)

Trew (w./)

g . .
hi b f ae cd j g aerhp,leaf(wf)thdl

Leaves in T, that are induced with wy are called special leaves.

T,ev(wr) contains the special leaves and their LCAs (special nodes).

> w, Ispecial(wr)| = O(zlg 2).
The left endpoint of a LPMEM always stays at a special internal
node: Lemma 9.

12

Second Method: Induced Subtree T, (wy)

h1 b f ae cd j g a e ¢ h f d i

R hp_leaf(wy) !

e Each special internal node U in T, (ws) stores a pointer, e,
pointing to U’ = partner(U/hp_leaf (wf)) in Tgyr.

13

Second Method: Induced Subtree T, (wy)

hi b f ae cd j g a e C h f d i

D hp,leaf(wf)j
e Each special internal node U in T, (ws) stores a pointer, e,

pointing to U’ = partner(U/hp_leaf (wf)) in Tgyr.
e Each special internal node U stores another pointer, ep:

13

Second Method: Induced Subtree T, (wy)

B & ¢ bhp,leaf(wf)J

e Each special internal node U in T, (ws) stores a pointer, e,
pointing to U’ = partner(U/hp_leaf (wf)) in Tgyr.
e Each special internal node U stores another pointer, ep:
e Given a pair of parent and child nodes, O and L, if L does not induce
with O’, then pointer e of L points to O.

13

Second Method: Induced Subtree T, (wy)

wi/Q (L[R!

a e ¢ bhp,leaf(u;f)J

e Each special internal node U in T, (ws) stores a pointer, e,
pointing to U’ = partner(U/hp_leaf (wf)) in Tgyr.
e Each special internal node U stores another pointer, ep:
e Given a pair of parent and child nodes, O and L, if L does not induce
with O’, then pointer e of L points to O.
e Otherwise, its ey points to the same node as of its lowest ancestor
that has a valid ep.
13

Second Method & Open Problems

e The second method:
o Query Time: O(m* + mf(n) + mlgzlglg z).
e Space Cost: O(zlgz + S(n)) words of space.
e Open Problems:
e Query Time: O(m - f(n))
e Space: O(zlgz + S(n)) or even O(z + S(n))?

14

