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What’s
clustering ?
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Given a series of N objects :

1/ Find adapted 
 descriptors
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Introduction Filtering random graph signals for clustering Conclusion

After step 1, one has :

• N vectors in d dimensions (descriptor dimension) :

x1, x2, · · · , xN ∈ Rd

• and their distance matrix ∆ ∈ RN×N .

Goal of clustering : assign a label c(i) = 1, · · · , k to each object i
in order to organize / simplify / analyze the data.

There exists two different general types of methods :

• methods directly based on the xi and/or ∆ like k-means or
hierarchical clustering.

• graph-based methods.
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Graph construction from the distance matrix ∆

Create a graph G = (V ,E ) :

• each node in V is one of the N objects

• each pair of nodes (i , j) is connected if the associated distance
∆(i , j) is small enough.

For example, two connectivity possibilities :

• Gaussian kernel :

1. all pairs of nodes are connected with links of weights
exp(−∆(i , j)/σ)

2. remove all links of weight inferior to ε

• k nearest neighbors : connect each node to its k nearest
neighbors.
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The problem now states :

Given the graph G representing the similarity between the N
objects, find a partition of all nodes in k clusters.

Many methods exist [Fortunato ’10] :

• Modularity (or other cost-function) optimisation methods
[Newman ’06]

• Random walk methods [Schaub ’12]

• Methods inspired from statistical physics [Krzakala ’13],
information theory [Rosvall ’08]...

• spectral methods

• ...
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Three useful matrices
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The adjacency matrix : The degree matrix :

The Laplacian matrix :

W =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

 S =


2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1



L = S−W =


2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1
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The adjacency matrix : The degree matrix :

The Laplacian matrix :

W =


0 .5 .5 0
.5 0 .5 4
.5 .5 0 0
0 4 0 0

 S =


1 0 0 0
0 5 0 0
0 0 1 0
0 0 0 4



L = S−W =


1 −.5 −.5 0

−.5 5 −.5 −4
−.5 −.5 1 0

0 −4 0 4
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The classical spectral clustering algorithm [Von Luxburg ’06] :

Given the N-node graph G of laplacian matrix L :

1. Compute L’s first k eigenvectors :

Uk = (u1|u2| · · · |uk) .

2. Consider each node i as a point in Rk :

fi = U>k δi .

3. Run k-means with the Euclidean distance : Dij = ‖fi − fj‖ and
obtain k clusters.

Definition : Let us call Dij the spectral clustering distance.
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What’s the point of using a graph ?

N points in d = 2 dims. Result
with k-means (k=2) on ∆ :

After creating a graph, partial
daigonalisation of L and run-
ning k-means (k=2) on D :
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Overview
Problem : When N and/or k become too large, there are two main
bottlenecks in the algorithm :

1. The partial eigendecomposition of the (sparse) Laplacian with
restarted Arnoldi method [O(k3 + Nk2 + N#Ek)] [Chen ’11a]

2. high-dimensional k-means.

Goal : Circumvent bottleneck #1.
Scheme of existing lines of work :

1. approximate Uk : Ũk via power methods [O(pk#E )] [Lin ’10,

Boutsidis ’15] or Nystrom-type methods [O(n3 + nN)]
[Fowlkes ’04, Wang ’09, Chen ’11b, . . . ].

2. compute approximate feature vectors f̃i = Ũ>k δi ' fi .

3. compute approximate spectral distance D̃ij = ‖f̃i − f̃j‖ ' Dij .

Contribution : directly estimate Dij without approximating Uk in
O(m#E logN).

N. Tremblay
Accelerated Spectral Clustering Using Graph

Filtering of Random Signals ICASSP, 24th of March 2016 9 / 22



Introduction Filtering random graph signals for clustering Conclusion

Overview
Problem : When N and/or k become too large, there are two main
bottlenecks in the algorithm :

1. The partial eigendecomposition of the (sparse) Laplacian with
restarted Arnoldi method [O(k3 + Nk2 + N#Ek)] [Chen ’11a]

2. high-dimensional k-means.

Goal : Circumvent bottleneck #1.

Scheme of existing lines of work :
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Filtering random graph
signals for clustering
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What’s graph signal filtering ? [Shuman ’13]

L = S−W = UΛU>

• U is the Fourier basis of the graph

• the Fourier transform of a signal f

reads : f̂ = U>f

• Λ = Diag(λ1, λ2, · · · , λN) the spectrum

Given a filter function h defined
in the Fourier space.

0
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0.4

0.6

0.8

1

1 2
λ

g(
λ)

h

In the node space, the signal f filtered by h reads :

f h = U h(Λ) U> f = Hf
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So where’s the link with
clustering ?
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Remember : the classical spectral clustering algorithm

Given the N-node graph G of adjacency matrix W :

1. Compute L’s first k eigenvectors : Uk = (u1|u2| · · · |uk) .

2. Consider each node i as a point in Rk : fi = U>k δi .

3. Run k-means with Dij = ||fi − fj || and obtain k clusters.

Our goal : Estimate Dij without computing exactly Uk .

Dij =
∥∥∥U>k (δi − δj)

∥∥∥
=
∥∥∥U>k δij

∥∥∥
=
∥∥∥UkU>k δij

∥∥∥
=
∥∥∥U hλk (Λ) U>δij

∥∥∥
= ‖Hλkδij‖ .

λ

0 λ
k

1 2

h
λ

k

(λ
)

-0.5

0

0.5

1

1.5
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Fast filtering [Hammond, ACHA ’11]

In practice, we use a poly
approx of order m of hλk :

h̃λk =
m∑
l=1

αlλ
l ' hλk .

λ

0 λ
k

1 2

h
λ

k

(λ
)

-0.5

0

0.5

1

1.5
ideal

m=100

m=20

m=5

Indeed, in this case, filtering a signal f reads :

Hλk f ' H̃λk f = Uh̃λk (Λ)U>f = U
m∑
l=1

αlΛ
lU>f =

m∑
l=1

αlL
l f

• Does not require to compute Uk : no partial diagonalisation.

• Only involves matrix-vector multiplications [costs O(m#E )].
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Main idea

The spectral distance reads : Dij = ‖Hλkδij‖ = limm→∞

∥∥∥H̃λkδij

∥∥∥

Let R = (r1|r2| · · · |rη) ∈ RN×η be a random Gaussian matrix, i.e. a
collection of η random graph signals, with 0 mean and var. 1/η.

We define f̃i = (H̃λk R)>δi ∈ Rη and D̃ij =
∥∥∥f̃i − f̃j

∥∥∥
Norm conservation theorem (case of infinite m)

Let ε > 0, if η > η0 ∼ logN
ε2

, then, with proba > 1− 1/N, we have :

∀(i , j) ∈ [1,N]2 (1− ε)Dij ≤ D̃ij ≤ (1 + ε)Dij .

Consequence : to estimate Dij with no partial diagonalisation of L,
fast filter only η ∼ logN random signals !

N. Tremblay
Accelerated Spectral Clustering Using Graph

Filtering of Random Signals ICASSP, 24th of March 2016 15 / 22



Introduction Filtering random graph signals for clustering Conclusion

Main idea

The spectral distance reads : Dij = ‖Hλkδij‖ = limm→∞

∥∥∥H̃λkδij

∥∥∥
Let R = (r1|r2| · · · |rη) ∈ RN×η be a random Gaussian matrix, i.e. a
collection of η random graph signals, with 0 mean and var. 1/η.

We define f̃i = (H̃λk R)>δi ∈ Rη and D̃ij =
∥∥∥f̃i − f̃j

∥∥∥

Norm conservation theorem (case of infinite m)

Let ε > 0, if η > η0 ∼ logN
ε2

, then, with proba > 1− 1/N, we have :

∀(i , j) ∈ [1,N]2 (1− ε)Dij ≤ D̃ij ≤ (1 + ε)Dij .

Consequence : to estimate Dij with no partial diagonalisation of L,
fast filter only η ∼ logN random signals !

N. Tremblay
Accelerated Spectral Clustering Using Graph

Filtering of Random Signals ICASSP, 24th of March 2016 15 / 22



Introduction Filtering random graph signals for clustering Conclusion

Main idea

The spectral distance reads : Dij = ‖Hλkδij‖ = limm→∞

∥∥∥H̃λkδij

∥∥∥
Let R = (r1|r2| · · · |rη) ∈ RN×η be a random Gaussian matrix, i.e. a
collection of η random graph signals, with 0 mean and var. 1/η.

We define f̃i = (H̃λk R)>δi ∈ Rη and D̃ij =
∥∥∥f̃i − f̃j

∥∥∥
Norm conservation theorem (case of infinite m)

Let ε > 0, if η > η0 ∼ logN
ε2

, then, with proba > 1− 1/N, we have :

∀(i , j) ∈ [1,N]2 (1− ε)Dij ≤ D̃ij ≤ (1 + ε)Dij .

Consequence : to estimate Dij with no partial diagonalisation of L,
fast filter only η ∼ logN random signals !

N. Tremblay
Accelerated Spectral Clustering Using Graph

Filtering of Random Signals ICASSP, 24th of March 2016 15 / 22



Introduction Filtering random graph signals for clustering Conclusion

Main idea

The spectral distance reads : Dij = ‖Hλkδij‖ = limm→∞

∥∥∥H̃λkδij

∥∥∥
Let R = (r1|r2| · · · |rη) ∈ RN×η be a random Gaussian matrix, i.e. a
collection of η random graph signals, with 0 mean and var. 1/η.

We define f̃i = (H̃λk R)>δi ∈ Rη and D̃ij =
∥∥∥f̃i − f̃j

∥∥∥
Norm conservation theorem (case of infinite m)

Let ε > 0, if η > η0 ∼ logN
ε2

, then, with proba > 1− 1/N, we have :

∀(i , j) ∈ [1,N]2 (1− ε)Dij ≤ D̃ij ≤ (1 + ε)Dij .

Consequence : to estimate Dij with no partial diagonalisation of L,
fast filter only η ∼ logN random signals !

N. Tremblay
Accelerated Spectral Clustering Using Graph

Filtering of Random Signals ICASSP, 24th of March 2016 15 / 22



Introduction Filtering random graph signals for clustering Conclusion

How to quickly estimate λk ,
the sole unknown of the fast filtering operation ?

Goal : given a SDP L, estimate its k-th eigenvalue as fast as possible.

We use eigencount techniques [Napoli ’13] (also based on
polynomial filtering of random vectors !) :

• given the interval [0, b], get an approximation of the number
of enclosed eigenvalues.

• And find λk by dichotomy on b.
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Accelerated spectral algorithm

Given the N-node graph G of adjacency matrix W :

Inputs : k , polynomial order m, # random signals η ∼ logN.

1. Estimate λk , the k-th eigenvalue of L.

2. Generate η random graph signals in matrix R ∈ RN×η.

3. Filter them with H̃λk and treat each node i as a point in Rη :

f̃ >i = δ>i H̃λk R.

4. Run k-means with the Euclidean distance : D̃ij = ||f̃i − f̃j ||
and obtain k clusters.

Computing the features (steps 1 to 3) costs
O(m#E logN) ' O(mN logN).

N. Tremblay
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Toy experiment

Gaussian data around
10 centroids :
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Example : N = 105, k = 10 : filtering only η = 20 random signals
gives same performance... 3x faster.
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Example : N = 105, k = 10 : filtering only η = 20 random signals
gives same performance... 3x faster.
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Main idea of this paper

Low-pass graph fast filtering of random signals : a way to
by-pass the Laplacian’s diagonalisation for learning tasks.
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Ideas surrounding this paper :
compressive spectral clustering [arXiv : Tremblay ’16, Puy ’15]

1. Cluster indicator functions are k-bandlimited signals on
the graph : they can be recovered after appropriate sampling
schemes ! 1/ Compute features, 2/ Sample a few nodes,
3/ Run low-dimensional k-means, 4/ Interpolate

2. Norm conservation theorem for finite polynomial order m

3. Generalisation to the use of the normalized Laplacian
(but not the random walk Laplacian yet)
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Perspectives and difficult questions

Two difficult questions (among others) :

1. Given a SDP matrix, how to estimate as fast as possible its
k-th eigenvalue, and only that one ?

2. How to choose automatically the appropriate polynomial order
m ?

Perspectives

1. Rational filters instead of polynomial filters ? [Shi ’15b]

2. How about if nodes are added one by one ?
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