Accelerated Spectral Clustering Using Graph Filtering of Random Signals

Nicolas Tremblay^(1,2,3), Gilles $Puy^{(1)}$, Pierre Borgnat⁽²⁾, Rémi Gribonval⁽¹⁾, Pierre Vandergheynst^(1,3)

PANAMA Team, INRIA Rennes, France
 Physics Laboratory, Ens de Lyon, CNRS, France
 Signal Processing Laboratory 2, EPFL, Switzerland

<ロ> (四) (四) (三) (三) (三)

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

Nicolas Tremblay^(1,2,3), Gilles $Puy^{(1)}$, Pierre Borgnat⁽²⁾, Rémi Gribonval⁽¹⁾, Pierre Vandergheynst^(1,3)

PANAMA Team, INRIA Rennes, France
 Physics Laboratory, Ens de Lyon, CNRS, France
 Signal Processing Laboratory 2, EPFL, Switzerland

"Compressive spectral embedding : sidestepping the SVD", NIPS '15 D. Ramasamy and U. Madhow, UC Santa Barbara

N. Tremblay

Filtering random graph signals for clustering

Conclusion 0000

What's clustering?

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

N. Tremblay

Filtering random graph signals for clustering

Conclusion 0000

Given a series of N objects :

001112223334444

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

N. Tremblav

Filtering random graph signals for clustering

Conclusion 0000

Given a series of N objects :

 $\begin{array}{c} 0 & 0 & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 & 4 \\ 1 & \text{Find adapted} \\ \text{descriptors} & \downarrow \\ 2 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 3 \\ 4 & 0 & 3 \\ 4 & 0 & 3 \\ 4 & 4 & 3 \end{array}$

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

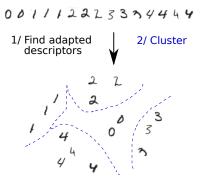
イロト 不得 トイヨト イヨト

2 / 22

э

Conclusion 0000

Given a series of N objects :



Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

イロト 不同 トイヨト イヨト

2 / 22

э

Filtering random graph signals for clustering

Conclusion 0000

After step 1, one has :

• *N* vectors in *d* dimensions (descriptor dimension) :

$$\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N \in \mathbb{R}^d$$

• and their distance matrix $\Delta \in \mathbb{R}^{N \times N}$.

(ロ) (同) (三) (三) (三) (0) (○)

Filtering random graph signals for clustering

Conclusion 0000

After step 1, one has :

• *N* vectors in *d* dimensions (descriptor dimension) :

$$\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N \in \mathbb{R}^d$$

• and their distance matrix $\mathbf{\Delta} \in \mathbb{R}^{N imes N}$.

<u>Goal of clustering</u> : assign a label $c(i) = 1, \dots, k$ to each object i in order to organize / simplify / analyze the data.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Filtering random graph signals for clustering

Conclusion 0000

After step 1, one has :

• *N* vectors in *d* dimensions (descriptor dimension) :

 $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N \in \mathbb{R}^d$

• and their distance matrix $\Delta \in \mathbb{R}^{N \times N}$.

<u>Goal of clustering</u> : assign a label $c(i) = 1, \dots, k$ to each object i in order to organize / simplify / analyze the data.

There exists two different general types of methods :

- methods directly based on the *x_i* and/or Δ like *k*-means or hierarchical clustering.
- graph-based methods.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ICASSP. 24th of March 2016

Graph construction from the distance matrix $oldsymbol{\Delta}$

Create a graph $\mathcal{G} = (V, E)$:

- each node in V is one of the N objects
- each pair of nodes (i, j) is connected if the associated distance $\Delta(i, j)$ is small enough.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Graph construction from the distance matrix $oldsymbol{\Delta}$

Create a graph $\mathcal{G} = (V, E)$:

- each node in V is one of the N objects
- each pair of nodes (i, j) is connected if the associated distance $\Delta(i, j)$ is small enough.
- For example, two connectivity possibilities :
 - Gaussian kernel :
 - 1. all pairs of nodes are connected with links of weights $\exp(-\Delta(i,j)/\sigma)$
 - 2. remove all links of weight inferior to $\boldsymbol{\epsilon}$
 - k nearest neighbors : connect each node to its k nearest neighbors.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Filtering random graph signals for clustering

Conclusion 0000

The problem now states :

Given the graph G representing the similarity between the N objects, find a partition of all nodes in k clusters.

<ロト <回ト < 注ト < 注ト = 注

The problem now states :

Given the graph G representing the similarity between the N objects, find a partition of all nodes in k clusters.

Many methods exist [Fortunato '10] :

- Modularity (or other cost-function) optimisation methods [Newman '06]
- Random walk methods [Schaub '12]
- Methods inspired from statistical physics [Krzakala '13], information theory [Rosvall '08]...
- spectral methods
- ...

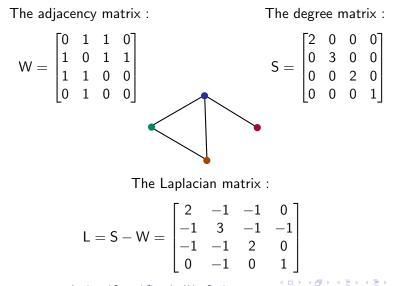
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

N. Tremblav

Filtering random graph signals for clustering

Conclusion 0000

Three useful matrices



Accelerated Spectral Clustering Using Graph Filtering of Random Signals

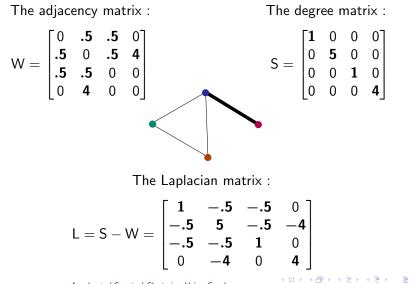
ICASSP, 24th of March 2016

N. Tremblav

Filtering random graph signals for clustering

Conclusion 0000

Three useful matrices



Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

The classical spectral clustering algorithm [Von Luxburg '06] :

Given the N-node graph $\mathcal G$ of laplacian matrix L :

1. Compute L's first k eigenvectors :

$$U_k = (\boldsymbol{u}_1 | \boldsymbol{u}_2 | \cdots | \boldsymbol{u}_k).$$

2. Consider each node *i* as a point in \mathbb{R}^k :

$$f_i = U_k^{\top} \delta_i.$$

3. Run *k*-means with the Euclidean distance : $D_{ij} = ||\mathbf{f}_i - \mathbf{f}_j||$ and obtain *k* clusters.

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The classical spectral clustering algorithm [Von Luxburg '06] :

Given the N-node graph ${\mathcal G}$ of laplacian matrix L :

1. Compute L's first k eigenvectors :

$$\mathsf{U}_k = (\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_k).$$

2. Consider each node *i* as a point in \mathbb{R}^k :

$$f_i = U_k^{\top} \delta_i.$$

3. Run *k*-means with the Euclidean distance : $D_{ij} = ||\mathbf{f}_i - \mathbf{f}_j||$ and obtain *k* clusters.

Definition : Let us call D_{ij} the spectral clustering distance.

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

N. Tremblay

7 / 22

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

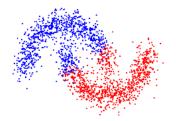
ICASSP. 24th of March 2016

Filtering random graph signals for clustering

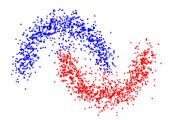
Conclusion 0000

What's the point of using a graph?

N points in d = 2 dims. Result with k-means (k=2) on Δ :



After creating a graph, partial daigonalisation of L and running k-means (k=2) on **D** :



 < □ > < □</td>
 > < □</td>
 > < □</td>

 ICASSP, 24th of March 2016

Overview

Problem : When N and/or k become too large, there are two main bottlenecks in the algorithm :

- 1. The partial eigendecomposition of the (sparse) Laplacian with restarted Arnoldi method $[O(k^3 + Nk^2 + N\#Ek)]$ [Chen '11a]
- 2. high-dimensional k-means.

<ロト < 同ト < 回ト < 回ト = 三日

Overview

Problem : When N and/or k become too large, there are two main bottlenecks in the algorithm :

- 1. The partial eigendecomposition of the (sparse) Laplacian with restarted Arnoldi method $[O(k^3 + Nk^2 + N\#Ek)]$ [Chen '11a]
- 2. high-dimensional k-means.

Goal : Circumvent bottleneck #1.

<ロト < 同ト < 回ト < 回ト = 三日

Overview

Problem : When N and/or k become too large, there are two main bottlenecks in the algorithm :

- 1. The partial eigendecomposition of the (sparse) Laplacian with restarted Arnoldi method $[O(k^3 + Nk^2 + N\#Ek)]$ [Chen '11a]
- 2. high-dimensional k-means.
- Goal : Circumvent bottleneck #1. Scheme of existing lines of work :
 - approximate U_k : Ũ_k via power methods [O(pk#E)] [Lin '10, Boutsidis '15] or Nystrom-type methods [O(n³ + nN)] [Fowlkes '04, Wang '09, Chen '11b, ...].
 - 2. compute approximate feature vectors $\tilde{\mathbf{f}}_i = \tilde{U}_k^{\top} \boldsymbol{\delta}_i \simeq \mathbf{f}_i$.
 - 3. compute approximate spectral distance $\tilde{D}_{ij} = \|\tilde{f}_i \tilde{f}_j\| \simeq D_{ij}$.

ICASSP, 24th of March 2016

<ロト < 同ト < 回ト < 回ト = 三日

Overview

Problem : When N and/or k become too large, there are two main bottlenecks in the algorithm :

- 1. The partial eigendecomposition of the (sparse) Laplacian with restarted Arnoldi method $[O(k^3 + Nk^2 + N\#Ek)]$ [Chen '11a]
- 2. high-dimensional k-means.
- Goal : Circumvent bottleneck #1. Scheme of existing lines of work :
 - approximate U_k : Ũ_k via power methods [O(pk#E)] [Lin '10, Boutsidis '15] or Nystrom-type methods [O(n³ + nN)] [Fowlkes '04, Wang '09, Chen '11b, ...].
 - 2. compute approximate feature vectors $\tilde{\mathbf{f}}_i = \tilde{U}_k^\top \boldsymbol{\delta}_i \simeq \mathbf{f}_i$.
- 3. compute approximate spectral distance $\tilde{D}_{ij} = \|\tilde{f}_i \tilde{f}_j\| \simeq D_{ij}$. Contribution : directly estimate D_{ij} without approximating U_k in $O(m \# E \log N)$.

N. Tremblay

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

Conclusion 0000

Filtering random graph signals for clustering

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

10 / 22

N. Tremblay

N. Tremblav

Filtering random graph signals for clustering $0 \bullet 0000000$

Conclusion 0000

What's graph signal filtering? [Shuman '13]

• U is the Fourier basis of the graph

 $\mathsf{L} = \mathsf{S} - \mathsf{W} = \mathbf{U} \mathsf{\Lambda} \mathbf{U}^\top$

• the Fourier transform of a signal f

reads :
$$\hat{f} = \mathbf{U}^{\top} f$$

• $\Lambda = Diag(\lambda_1, \lambda_2, \cdots, \lambda_N)$ the spectrum

イロト 不得 トイヨト イヨト 二日

N. Tremblav

Filtering random graph signals for clustering $0 \bullet 0 0 0 0 0 0 0$

Conclusion 0000

What's graph signal filtering? [Shuman '13]

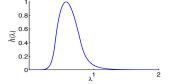
• U is the Fourier basis of the graph

 $\mathsf{L}=\mathsf{S}-\mathsf{W}=\mathsf{U}\Lambda\mathsf{U}^\top$

reads :
$$\hat{f} = \mathbf{U}^{\top} f$$

• $\Lambda = \mathsf{Diag}(\lambda_1, \lambda_2, \cdots, \lambda_N)$ the spectrum

Given a filter function *h* defined in the Fourier space.



イロト 不得 トイヨト イヨト

11 / 22

э

N. Tremblav

Filtering random graph signals for clustering $0 \bullet 0 0 0 0 0 0 0$

Conclusion 0000

What's graph signal filtering? [Shuman '13]

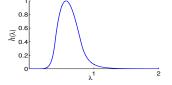
• U is the Fourier basis of the graph

 $\mathsf{L}=\mathsf{S}-\mathsf{W}=\mathsf{U}\Lambda\mathsf{U}^\top$

reads :
$$\hat{f} = \mathbf{U}^{\top} f$$

• $\Lambda = \mathsf{Diag}(\lambda_1, \lambda_2, \cdots, \lambda_N)$ the spectrum

Given a filter function *h* defined in the Fourier space.



In the node space, the signal f filtered by h reads :

$$f^h = \bigcup h(\Lambda) \bigcup^\top f = \mathsf{H}f$$

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

イロト イボト イヨト イヨト 二日

Conclusion 0000

So where's the link with clustering?

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

12 / 22

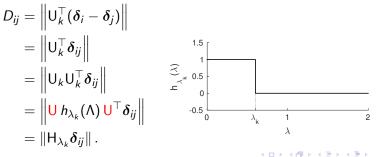
N. Tremblay

Remember : the classical spectral clustering algorithm

Given the N-node graph ${\mathcal G}$ of adjacency matrix W :

- 1. Compute L's first k eigenvectors : $U_k = (\boldsymbol{u}_1 | \boldsymbol{u}_2 | \cdots | \boldsymbol{u}_k)$.
- 2. Consider each node *i* as a point in \mathbb{R}^k : $\mathbf{f}_i = \bigcup_k^\top \boldsymbol{\delta}_i$.
- 3. Run k-means with $D_{ij} = ||\mathbf{f}_i \mathbf{f}_j||$ and obtain k clusters.

Our goal : Estimate D_{ij} without computing exactly U_k .



Accelerated Spectral Clustering Using Graph Filtering of Random Signals

13 / 22

э

ICASSP. 24th of March 2016

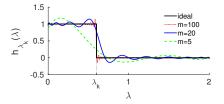
N. Tremblav

Conclusion 0000

Fast filtering [Hammond, ACHA '11]

In practice, we use a poly approx of order *m* of $h_{\lambda_{\mu}}$:

$$\tilde{h}_{\lambda_k} = \sum_{l=1}^m \alpha_l \lambda^l \simeq h_{\lambda_k}.$$



イロト 不同 トイヨト イヨト

14 / 22

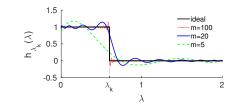
э

Conclusion 0000

Fast filtering [Hammond, ACHA '11]

In practice, we use a poly approx of order *m* of $h_{\lambda \nu}$:

 $\tilde{h}_{\lambda_k} = \sum_{I=1} \alpha_I \lambda^I \simeq h_{\lambda_k}.$



Indeed, in this case, filtering a signal \boldsymbol{f} reads :

$$\mathsf{H}_{\lambda_k}\boldsymbol{f}\simeq \tilde{\mathsf{H}}_{\lambda_k}\boldsymbol{f}=\boldsymbol{\mathsf{U}}\tilde{h}_{\lambda_k}(\Lambda)\boldsymbol{\mathsf{U}}^{\top}\boldsymbol{f}=\boldsymbol{\mathsf{U}}\sum_{l=1}^m\alpha_l\Lambda^l\boldsymbol{\mathsf{U}}^{\top}\boldsymbol{f}=\sum_{l=1}^m\alpha_l\mathsf{L}^l\boldsymbol{f}$$

ICASSP, 24th of March 2016

イロト 不得 トイヨト イヨト

14 / 22

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

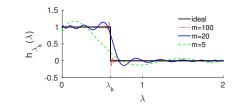
N. Tremblay

Conclusion 0000

Fast filtering [Hammond, ACHA '11]

In practice, we use a poly approx of order *m* of h_{λ_k} :

 $\tilde{h}_{\lambda_k} = \sum_{I=1} \alpha_I \lambda^I \simeq h_{\lambda_k}.$



イロト 不得 トイヨト イヨト

ICASSP. 24th of March 2016

Indeed, in this case, filtering a signal f reads :

$$\mathsf{H}_{\lambda_k}\boldsymbol{f}\simeq \tilde{\mathsf{H}}_{\lambda_k}\boldsymbol{f} = \boldsymbol{\mathsf{U}}\tilde{h}_{\lambda_k}(\Lambda)\boldsymbol{\mathsf{U}}^{\top}\boldsymbol{f} = \boldsymbol{\mathsf{U}}\sum_{l=1}^m \alpha_l\Lambda^l\boldsymbol{\mathsf{U}}^{\top}\boldsymbol{f} = \sum_{l=1}^m \alpha_l\mathsf{L}^l\boldsymbol{f}$$

- Does not require to compute U_k : no partial diagonalisation.
- Only involves matrix-vector multiplications [costs O(m#E)].

N. Tremblay

Filtering random graph signals for clustering 000000000

Conclusion 0000

Main idea

The spectral distance reads :
$$\left| D_{ij} = \| \mathsf{H}_{\lambda_k} \delta_{ij} \| = \lim_{m \to \infty} \left\| \widetilde{\mathsf{H}}_{\lambda_k} \delta_{ij} \right\|$$

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

・ロト ・四ト ・ヨト ・ヨト 三日

Conclusion 0000

15 / 22

(日)

ICASSP. 24th of March 2016

Main idea

The spectral distance reads :
$$\left| D_{ij} = \| \mathsf{H}_{\lambda_k} \delta_{ij} \| = \mathsf{lim}_{m o \infty} \left\| \widetilde{\mathsf{H}}_{\lambda_k} \delta_{ij} \right\|
ight|$$

Let $R = (\mathbf{r}_1 | \mathbf{r}_2 | \cdots | \mathbf{r}_\eta) \in \mathbb{R}^{N \times \eta}$ be a random Gaussian matrix, i.e. a collection of η random graph signals, with 0 mean and var. $1/\eta$.

We define
$$ilde{m{h}}_i = (ilde{\mathsf{H}}_{\lambda_k}\mathsf{R})^ op m{\delta}_i \in \mathbb{R}^\eta$$
 and $ilde{D}_{ij} = \left\| ilde{m{f}}_i - ilde{m{f}}_j
ight\|$

Conclusion 0000

Main idea

The spectral distance reads :
$$\left| D_{ij} = \| \mathsf{H}_{\lambda_k} \delta_{ij} \| = \mathsf{lim}_{m o \infty} \left\| \widetilde{\mathsf{H}}_{\lambda_k} \delta_{ij} \right\|
ight|$$

Let $R = (\mathbf{r}_1 | \mathbf{r}_2 | \cdots | \mathbf{r}_\eta) \in \mathbb{R}^{N \times \eta}$ be a random Gaussian matrix, i.e. a collection of η random graph signals, with 0 mean and var. $1/\eta$.

We define
$$ilde{m{f}}_i = (ilde{\mathsf{H}}_{\lambda_k}\mathsf{R})^ op m{\delta}_i \in \mathbb{R}^\eta$$
 and $ilde{D}_{ij} = \left\| ilde{m{f}}_i - ilde{m{f}}_j
ight\|$

Norm conservation theorem (case of infinite m)

Let $\epsilon > 0$, if $\eta > \eta_0 \sim \frac{\log N}{\epsilon^2}$, then, with proba > 1 - 1/N, we have : $\forall (i,j) \in [1,N]^2 \qquad (1-\epsilon)D_{ij} \leq \tilde{D}_{ij} \leq (1+\epsilon)D_{ij}.$

> Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ □ _ ^0

Conclusion 0000

Main idea

The spectral distance reads :
$$\left| D_{ij} = \| \mathsf{H}_{\lambda_k} \delta_{ij} \| = \mathsf{lim}_{m o \infty} \left\| \widetilde{\mathsf{H}}_{\lambda_k} \delta_{ij}
ight\|$$

Let $R = (\mathbf{r}_1 | \mathbf{r}_2 | \cdots | \mathbf{r}_\eta) \in \mathbb{R}^{N \times \eta}$ be a random Gaussian matrix, i.e. a collection of η random graph signals, with 0 mean and var. $1/\eta$.

We define
$$ilde{m{f}}_i = (ilde{\mathsf{H}}_{\lambda_k}\mathsf{R})^ op m{\delta}_i \in \mathbb{R}^\eta$$
 and $ilde{D}_{ij} = \left\| ilde{m{f}}_i - ilde{m{f}}_j
ight\|$

Norm conservation theorem (case of infinite m)

Let $\epsilon > 0$, if $\eta > \eta_0 \sim rac{\log N}{\epsilon^2}$, then, with proba > 1 - 1/N, we have :

$$orall (i,j) \in [1,N]^2 \qquad (1-\epsilon) D_{ij} \leq ilde{D}_{ij} \leq (1+\epsilon) D_{ij}.$$

 $\frac{\text{Consequence :}}{\text{fast filter only } \eta \sim \log N \text{ random signals !}}$

N. Tremblay

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

Filtering random graph signals for clustering 000000000

Conclusion 0000

How to quickly estimate λ_k , the sole unknown of the fast filtering operation?

Goal : given a SDP L, estimate its *k*-th eigenvalue as fast as possible.

We use eigencount techniques [Napoli '13] (also based on polynomial filtering of random vectors !) :

- given the interval [0, *b*], get an approximation of the number of enclosed eigenvalues.
- And find λ_k by dichotomy on *b*.

イロト イボト イヨト イヨト 二日

ICASSP. 24th of March 2016

Accelerated spectral algorithm

Given the N-node graph ${\mathcal G}$ of adjacency matrix W :

Inputs : k, polynomial order m, # random signals $\eta \sim \log N$.

- 1. Estimate λ_k , the *k*-th eigenvalue of L.
- 2. Generate η random graph signals in matrix $\mathsf{R} \in \mathbb{R}^{N \times \eta}$.
- 3. Filter them with \tilde{H}_{λ_k} and treat each node *i* as a point in \mathbb{R}^{η} :

$$\widetilde{\mathbf{f}}_i^{ op} = \mathbf{\delta}_i^{ op} \widetilde{\mathsf{H}}_{\lambda_k} \mathsf{R}.$$

4. Run *k*-means with the Euclidean distance : $\tilde{D}_{ij} = ||\tilde{f}_i - \tilde{f}_j||$ and obtain *k* clusters.

17 / 22

(ロ) (同) (三) (三) (三) (0) (○)

ICASSP. 24th of March 2016

Accelerated spectral algorithm

Given the N-node graph ${\mathcal G}$ of adjacency matrix W :

Inputs : k, polynomial order m, # random signals $\eta \sim \log N$.

- 1. Estimate λ_k , the *k*-th eigenvalue of L.
- 2. Generate η random graph signals in matrix $\mathsf{R} \in \mathbb{R}^{N \times \eta}$.
- 3. Filter them with \tilde{H}_{λ_k} and treat each node *i* as a point in \mathbb{R}^{η} :

$$\widetilde{\mathbf{f}}_i^{\top} = \mathbf{\delta}_i^{\top} \widetilde{\mathsf{H}}_{\lambda_k} \mathsf{R}.$$

4. Run *k*-means with the Euclidean distance : $\tilde{D}_{ij} = ||\tilde{f}_i - \tilde{f}_j||$ and obtain *k* clusters.

Computing the features (steps 1 to 3) costs $O(m\#E \log N) \simeq O(mN \log N)$.

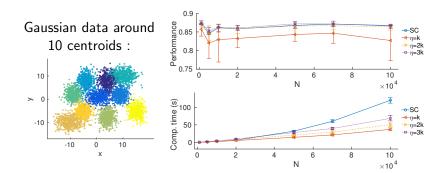
Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

(ロ) (同) (三) (三) (三) (0) (○)

Filtering random graph signals for clustering 000000000

Toy experiment



Accelerated Spectral Clustering Using Graph Filtering of Random Signals

• □ ▶ < 同 ▶ < 三</p> ICASSP. 24th of March 2016

< ∃⇒

э

18 / 22

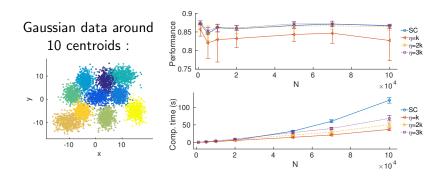
N. Tremblav

N. Tremblav

Filtering random graph signals for clustering ${\tt 00000000} \bullet$

Conclusion 0000

Toy experiment



Example : $N = 10^5$, k = 10 : filtering only $\eta = 20$ random signals gives same performance... 3x faster.

Accelerated Spectral Clustering Using Graph Filtering of Random Signals

ICASSP, 24th of March 2016

A (10) > (10)

N. Tremblav

Filtering random graph signals for clustering

Conclusion •000

Main idea of this paper

Low-pass graph fast filtering of random signals : a way to by-pass the Laplacian's diagonalisation for learning tasks.

(ロ) (同) (三) (三) (三) (0) (○)

Ideas surrounding this paper : compressive spectral clustering [arXiv : Tremblay '16, Puy '15]

- Cluster indicator functions are k-bandlimited signals on the graph : they can be recovered after appropriate sampling schemes! 1/ Compute features, 2/ Sample a few nodes, 3/ Run low-dimensional k-means, 4/ Interpolate
- 2. Norm conservation theorem for \underline{finite} polynomial order m
- 3. Generalisation to the use of the normalized Laplacian (but not the random walk Laplacian yet)

イロト 不得 トイヨト イヨト 二日

Perspectives and difficult questions

Two difficult questions (among others) :

- 1. Given a SDP matrix, how to estimate as fast as possible its *k*-th eigenvalue, and only that one?
- How to choose automatically the appropriate polynomial order m?

<ロト < 同ト < 回ト < 回ト = 三日

Perspectives and difficult questions

Two difficult questions (among others) :

- 1. Given a SDP matrix, how to estimate as fast as possible its *k*-th eigenvalue, and only that one?
- How to choose automatically the appropriate polynomial order m?

Perspectives

- 1. Rational filters instead of polynomial filters? [Shi '15b]
- 2. How about if nodes are added one by one?

<ロト < 同ト < 回ト < 回ト = 三日

ICASSP. 24th of March 2016

N. Tremblav

Filtering random graph signals for clustering

Conclusion

References

[Ramasamy '15] Compressive spectral embedding : sidestepping ... NIPS. [Fortunato '10] Community detection in graphs, Physics Reports [Newman '06] Modularity and community structure in networks, PNAS [Schaub '12] Markov dynamics as a zooming lens for multiscale ..., Plos One [Krzakala '13] Spectral redemption : clustering sparse networks, PNAS [Rosvall '08] Maps of random walks on complex networks reveal ..., PLOS One [Von Luxburg '06] A tutorial on spectral clustering, Statistics and Computing. [Chen '11a] Parallel spectral clustering in distributed systems, IEEE TPAMI [Lin '10] Power iteration clustering, ICML Boutsidis '15] Spectral clustering via the power method - provably, ICML [Fowlkes '04] Spectral grouping using the nystrom method, IEEE TPAMI [Wang '09] Approximate spectral clustering, AKDDM [Chen '11b] Large scale spectral clustering with landmark-based ..., CAI [Shuman '13] The emerging field of signal processing on graphs ..., SPMag [Hammond '11] Wavelets on graphs via spectral graph theory, ACHA [Napoli '13] Efficient estimation of eigenvalue counts in an interval, arXiv [Tremblay '16] Compressive spectral clustering, arXiv, subm. to ICML [Puy '15] Random sampling of bandlimited signals ..., arXiv, subm. to ACHA [Shi '15] Infinite impulse response graph filters in wireless sensor networks, SPL ・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日