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How to achieve H(M) ≤ H(Xn)?

– Steinruecken (2016): rate-optimal for any alphabet A
• Compress frequency count of symbols in M (vector in N|A|)
• Inefficient when |A| ≫ n, requires O(|A|) steps

– Compress Xn instead: efficient, if Xi are i.i.d.

• Entropy code each Xi with PX(Xi), requires O(n) steps
• Sub-optimal, achieves H(Xn) ≥ H(M)

Would like efficient, rate-optimal method for any A, n.
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ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

To encode X = x with PX and CDF FX ,

AC ANS

statistics range [FX(x), FX(x) + PX(x))
state fraction 0.1001 integer 1001
order queue-like stack-like
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Background: Asymmetric Numeral Systems (ANS)

Key difference: ANS decodes in reverse order

Encode Decode

ANS

Encode

Decode

AC



Background: Bits-back with ANS (BB-ANS)

Problem: Given Y = (X,Z), encode X at rate RX = H(X)

using

– code for Y at rate H(Y ) = H(X,Z) and

– code for Z at rate H(Z |X)

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X1, . . . , Xn

Use ANS stack as a random seed to sample Z1, . . . , Zn

Encode (X1, Z2), . . . , (Xn, Zn) onto the ANS stack
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Background: Bits-back with ANS (BB-ANS)

Take-away: BB-ANS gives an operational meaning to the identity

H(X) = H(X,Z)−H(Z |X) = I(X;Y ),

where Y = (X,Z).
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How does H(M) = H(f(Xn)) relate to H(Xn)?

H(Xn,M) = H(M) +H(Xn |M)

= H(Xn) +H(M|Xn)︸ ︷︷ ︸
=0

Multiset entropy

H(M) = H(Xn)−H(Xn |M)

H(Xn |M) bits are needed to order symbols in M to create Xn

It is often called the “order information”
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Recap: BB-ANS gives an operational meaning to the identity

H(X) = H(X,Z)−H(Z |X) = I(X;Y )

Multiset entropy:

H(M) = H(Xn)−H(Xn |M) = I(M;Xn)

Naive method: apply BB-ANS for multiset compression

Achieves H(M) on sequence of multisets M1,M2, . . .

Can we achieve H(M) on a single multiset M = f(Xn)?

In other words, can we compress M to − logPM(M) bits?
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Method: compressing M to − logPM(M) bits

Construct order information H(Xn |M) iteratively by “sampling
without replacement” from M. Alternate:

1. Decode sample (w.o. replacement) from M
2. Encode sampled element using PX

until M is depleted.
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Experiments: Synthetic multisets (rate)

Achieves H(M) = E[− logPM(M)] on single M
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Experiments: MNIST images with WebP

Symbols Xi can be images, text, or anything else.

Lossy codecs like WebP/JPEG can replace encoding with PX
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Experiments: JSON maps as nested multisets

Symbols Xi can be multisets themselves (as in JSON maps)

This means M is a multiset of multisets
Method naturally extends to this case
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Thank you!

James TownsendDaniel Severo

Alireza MakhzaniAshish Khisti Karen Ullrich

Presented by: dsevero.com and j-towns.github.io

Code: github.com/facebookresearch/multiset-compression

https://dsevero.com
https://j-towns.github.io
https://github.com/facebookresearch/multiset-compression
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