
Compressing Multisets with Large Alphabets

Daniel Severo123 James Townsend4

Ashish Khisti2 Alireza Makhzani23 Karen Ullrich1

1Meta AI 2University of Toronto
3Vector Institute for AI 4University of Amsterdam

Data Compression Conference, 2022

Outline

1. Problem setting

2. Motivation

3. Background
Asymmetric Numeral Systems (ANS)
Bits-back with ANS
Multiset entropy

4. Method

5. Experiments

6. Conclusion

Problem setting

Problem setting

Given a sequence of i.i.d. symbols Xn = (X1, . . . , Xn) with entropy

H(Xn) = nH(X) = nE [− logPX(X)]

we want to losslessly compress the multiset

M = f(Xn) = {X1, . . . , Xn}

at rate H(M) ≤ H(Xn).

Problem setting

Given a sequence of i.i.d. symbols Xn = (X1, . . . , Xn) with entropy

H(Xn) = nH(X) = nE [− logPX(X)]

we want to losslessly compress the multiset

M = f(Xn) = {X1, . . . , Xn}

at rate H(M) ≤ H(Xn).

Motivation

Motivation

How to achieve H(M) ≤ H(Xn)?

– Steinruecken (2016): rate-optimal for any alphabet A
• Compress frequency count of symbols in M (vector in N|A|)
• Inefficient when |A| ≫ n, requires O(|A|) steps

– Compress Xn instead: efficient, if Xi are i.i.d.

• Entropy code each Xi with PX(Xi), requires O(n) steps
• Sub-optimal, achieves H(Xn) ≥ H(M)

Would like efficient, rate-optimal method for any A, n.

Motivation

How to achieve H(M) ≤ H(Xn)?

– Steinruecken (2016): rate-optimal for any alphabet A

• Compress frequency count of symbols in M (vector in N|A|)
• Inefficient when |A| ≫ n, requires O(|A|) steps

– Compress Xn instead: efficient, if Xi are i.i.d.

• Entropy code each Xi with PX(Xi), requires O(n) steps
• Sub-optimal, achieves H(Xn) ≥ H(M)

Would like efficient, rate-optimal method for any A, n.

Motivation

How to achieve H(M) ≤ H(Xn)?

– Steinruecken (2016): rate-optimal for any alphabet A
• Compress frequency count of symbols in M (vector in N|A|)

• Inefficient when |A| ≫ n, requires O(|A|) steps

– Compress Xn instead: efficient, if Xi are i.i.d.

• Entropy code each Xi with PX(Xi), requires O(n) steps
• Sub-optimal, achieves H(Xn) ≥ H(M)

Would like efficient, rate-optimal method for any A, n.

Motivation

How to achieve H(M) ≤ H(Xn)?

– Steinruecken (2016): rate-optimal for any alphabet A
• Compress frequency count of symbols in M (vector in N|A|)
• Inefficient when |A| ≫ n, requires O(|A|) steps

– Compress Xn instead: efficient, if Xi are i.i.d.

• Entropy code each Xi with PX(Xi), requires O(n) steps
• Sub-optimal, achieves H(Xn) ≥ H(M)

Would like efficient, rate-optimal method for any A, n.

Motivation

How to achieve H(M) ≤ H(Xn)?

– Steinruecken (2016): rate-optimal for any alphabet A
• Compress frequency count of symbols in M (vector in N|A|)
• Inefficient when |A| ≫ n, requires O(|A|) steps

– Compress Xn instead: efficient, if Xi are i.i.d.

• Entropy code each Xi with PX(Xi), requires O(n) steps
• Sub-optimal, achieves H(Xn) ≥ H(M)

Would like efficient, rate-optimal method for any A, n.

Motivation

How to achieve H(M) ≤ H(Xn)?

– Steinruecken (2016): rate-optimal for any alphabet A
• Compress frequency count of symbols in M (vector in N|A|)
• Inefficient when |A| ≫ n, requires O(|A|) steps

– Compress Xn instead: efficient, if Xi are i.i.d.

• Entropy code each Xi with PX(Xi), requires O(n) steps

• Sub-optimal, achieves H(Xn) ≥ H(M)

Would like efficient, rate-optimal method for any A, n.

Motivation

How to achieve H(M) ≤ H(Xn)?

– Steinruecken (2016): rate-optimal for any alphabet A
• Compress frequency count of symbols in M (vector in N|A|)
• Inefficient when |A| ≫ n, requires O(|A|) steps

– Compress Xn instead: efficient, if Xi are i.i.d.

• Entropy code each Xi with PX(Xi), requires O(n) steps
• Sub-optimal, achieves H(Xn) ≥ H(M)

Would like efficient, rate-optimal method for any A, n.

Motivation

How to achieve H(M) ≤ H(Xn)?

– Steinruecken (2016): rate-optimal for any alphabet A
• Compress frequency count of symbols in M (vector in N|A|)
• Inefficient when |A| ≫ n, requires O(|A|) steps

– Compress Xn instead: efficient, if Xi are i.i.d.

• Entropy code each Xi with PX(Xi), requires O(n) steps
• Sub-optimal, achieves H(Xn) ≥ H(M)

Would like efficient, rate-optimal method for any A, n.

Background

Background: Asymmetric Numeral Systems (ANS)

ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

To encode X = x with PX and CDF FX ,

AC ANS

statistics range [FX(x), FX(x) + PX(x))
state fraction 0.1001 integer 1001
order queue-like stack-like

Background: Asymmetric Numeral Systems (ANS)

ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

To encode X = x with PX and CDF FX ,

AC ANS

statistics range [FX(x), FX(x) + PX(x))

state fraction 0.1001 integer 1001
order queue-like stack-like

Background: Asymmetric Numeral Systems (ANS)

ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

To encode X = x with PX and CDF FX ,

AC ANS

statistics range [FX(x), FX(x) + PX(x))
state fraction 0.1001 integer 1001

order queue-like stack-like

Background: Asymmetric Numeral Systems (ANS)

ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

To encode X = x with PX and CDF FX ,

AC ANS

statistics range [FX(x), FX(x) + PX(x))
state fraction 0.1001 integer 1001
order queue-like stack-like

Background: Asymmetric Numeral Systems (ANS)

Key difference: ANS decodes in reverse order

Encode Decode

ANS

Encode

Decode

AC

Background: Bits-back with ANS (BB-ANS)

Problem: Given Y = (X,Z), encode X at rate RX = H(X)

using

– code for Y at rate H(Y) = H(X,Z) and

– code for Z at rate H(Z |X)

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X1, . . . , Xn

Use ANS stack as a random seed to sample Z1, . . . , Zn

Encode (X1, Z2), . . . , (Xn, Zn) onto the ANS stack

Background: Bits-back with ANS (BB-ANS)

Problem: Given Y = (X,Z), encode X at rate RX = H(X) using

– code for Y at rate H(Y) = H(X,Z)

and

– code for Z at rate H(Z |X)

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X1, . . . , Xn

Use ANS stack as a random seed to sample Z1, . . . , Zn

Encode (X1, Z2), . . . , (Xn, Zn) onto the ANS stack

Background: Bits-back with ANS (BB-ANS)

Problem: Given Y = (X,Z), encode X at rate RX = H(X) using

– code for Y at rate H(Y) = H(X,Z) and

– code for Z at rate H(Z |X)

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X1, . . . , Xn

Use ANS stack as a random seed to sample Z1, . . . , Zn

Encode (X1, Z2), . . . , (Xn, Zn) onto the ANS stack

Background: Bits-back with ANS (BB-ANS)

Problem: Given Y = (X,Z), encode X at rate RX = H(X) using

– code for Y at rate H(Y) = H(X,Z) and

– code for Z at rate H(Z |X)

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X1, . . . , Xn

Use ANS stack as a random seed to sample Z1, . . . , Zn

Encode (X1, Z2), . . . , (Xn, Zn) onto the ANS stack

Background: Bits-back with ANS (BB-ANS)

Problem: Given Y = (X,Z), encode X at rate RX = H(X) using

– code for Y at rate H(Y) = H(X,Z) and

– code for Z at rate H(Z |X)

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X1, . . . , Xn

Use ANS stack as a random seed to sample Z1, . . . , Zn

Encode (X1, Z2), . . . , (Xn, Zn) onto the ANS stack

Background: Bits-back with ANS (BB-ANS)

Problem: Given Y = (X,Z), encode X at rate RX = H(X) using

– code for Y at rate H(Y) = H(X,Z) and

– code for Z at rate H(Z |X)

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X1, . . . , Xn

Use ANS stack as a random seed to sample Z1, . . . , Zn

Encode (X1, Z2), . . . , (Xn, Zn) onto the ANS stack

Background: Bits-back with ANS (BB-ANS)

Problem: Given Y = (X,Z), encode X at rate RX = H(X) using

– code for Y at rate H(Y) = H(X,Z) and

– code for Z at rate H(Z |X)

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X1, . . . , Xn

Use ANS stack as a random seed to sample Z1, . . . , Zn

Encode (X1, Z2), . . . , (Xn, Zn) onto the ANS stack

Background: Bits-back with ANS (BB-ANS)

Problem: Given Y = (X,Z), encode X at rate RX = H(X) using

– code for Y at rate H(Y) = H(X,Z) and

– code for Z at rate H(Z |X)

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X1, . . . , Xn

Use ANS stack as a random seed to sample Z1, . . . , Zn

Encode (X1, Z2), . . . , (Xn, Zn) onto the ANS stack

Background: Bits-back with ANS (BB-ANS)

The full picture

, with one-time overhead of + 1
nH(Z|X)

Background: Bits-back with ANS (BB-ANS)

The full picture, with one-time overhead of + 1
nH(Z|X)

Background: Bits-back with ANS (BB-ANS)

The full picture, with one-time overhead of + 1
nH(Z|X)

Background: Bits-back with ANS (BB-ANS)

Take-away: BB-ANS gives an operational meaning to the identity

H(X) = H(X,Z)−H(Z |X) = I(X;Y),

where Y = (X,Z).

Background: Multiset entropy

How does H(M) = H(f(Xn)) relate to H(Xn)?

H(Xn,M) = H(M) +H(Xn |M)

= H(Xn) +H(M|Xn)︸ ︷︷ ︸
=0

Multiset entropy

H(M) = H(Xn)−H(Xn |M)

H(Xn |M) bits are needed to order symbols in M to create Xn

It is often called the “order information”

Background: Multiset entropy

How does H(M) = H(f(Xn)) relate to H(Xn)?

H(Xn,M) = H(M) +H(Xn |M)

= H(Xn) +H(M|Xn)︸ ︷︷ ︸
=0

Multiset entropy

H(M) = H(Xn)−H(Xn |M)

H(Xn |M) bits are needed to order symbols in M to create Xn

It is often called the “order information”

Background: Multiset entropy

How does H(M) = H(f(Xn)) relate to H(Xn)?

H(Xn,M) = H(M) +H(Xn |M)

= H(Xn) +H(M|Xn)︸ ︷︷ ︸
=0

Multiset entropy

H(M) = H(Xn)−H(Xn |M)

H(Xn |M) bits are needed to order symbols in M to create Xn

It is often called the “order information”

Background: Multiset entropy

How does H(M) = H(f(Xn)) relate to H(Xn)?

H(Xn,M) = H(M) +H(Xn |M)

= H(Xn) +H(M|Xn)︸ ︷︷ ︸
=0

Multiset entropy

H(M) = H(Xn)−H(Xn |M)

H(Xn |M) bits are needed to order symbols in M to create Xn

It is often called the “order information”

Background: Multiset entropy

How does H(M) = H(f(Xn)) relate to H(Xn)?

H(Xn,M) = H(M) +H(Xn |M)

= H(Xn) +H(M|Xn)︸ ︷︷ ︸
=0

Multiset entropy

H(M) = H(Xn)−H(Xn |M)

H(Xn |M) bits are needed to order symbols in M to create Xn

It is often called the “order information”

Method

Method: overview

Recap: BB-ANS gives an operational meaning to the identity

H(X) = H(X,Z)−H(Z |X) = I(X;Y)

Multiset entropy:

H(M) = H(Xn)−H(Xn |M) = I(M;Xn)

Naive method: apply BB-ANS for multiset compression

Achieves H(M) on sequence of multisets M1,M2, . . .

Can we achieve H(M) on a single multiset M = f(Xn)?

In other words, can we compress M to − logPM(M) bits?

Method: overview

Recap: BB-ANS gives an operational meaning to the identity

H(X) = H(X,Z)−H(Z |X) = I(X;Y)

Multiset entropy:

H(M) = H(Xn)−H(Xn |M) = I(M;Xn)

Naive method: apply BB-ANS for multiset compression

Achieves H(M) on sequence of multisets M1,M2, . . .

Can we achieve H(M) on a single multiset M = f(Xn)?

In other words, can we compress M to − logPM(M) bits?

Method: overview

Recap: BB-ANS gives an operational meaning to the identity

H(X) = H(X,Z)−H(Z |X) = I(X;Y)

Multiset entropy:

H(M) = H(Xn)−H(Xn |M) = I(M;Xn)

Naive method: apply BB-ANS for multiset compression

Achieves H(M) on sequence of multisets M1,M2, . . .

Can we achieve H(M) on a single multiset M = f(Xn)?

In other words, can we compress M to − logPM(M) bits?

Method: overview

Recap: BB-ANS gives an operational meaning to the identity

H(X) = H(X,Z)−H(Z |X) = I(X;Y)

Multiset entropy:

H(M) = H(Xn)−H(Xn |M) = I(M;Xn)

Naive method: apply BB-ANS for multiset compression

Achieves H(M) on sequence of multisets M1,M2, . . .

Can we achieve H(M) on a single multiset M = f(Xn)?

In other words, can we compress M to − logPM(M) bits?

Method: overview

Recap: BB-ANS gives an operational meaning to the identity

H(X) = H(X,Z)−H(Z |X) = I(X;Y)

Multiset entropy:

H(M) = H(Xn)−H(Xn |M) = I(M;Xn)

Naive method: apply BB-ANS for multiset compression

Achieves H(M) on sequence of multisets M1,M2, . . .

Can we achieve H(M) on a single multiset M = f(Xn)?

In other words, can we compress M to − logPM(M) bits?

Method: overview

Recap: BB-ANS gives an operational meaning to the identity

H(X) = H(X,Z)−H(Z |X) = I(X;Y)

Multiset entropy:

H(M) = H(Xn)−H(Xn |M) = I(M;Xn)

Naive method: apply BB-ANS for multiset compression

Achieves H(M) on sequence of multisets M1,M2, . . .

Can we achieve H(M) on a single multiset M = f(Xn)?

In other words, can we compress M to − logPM(M) bits?

Method: compressing M to − logPM(M) bits

Construct order information H(Xn |M) iteratively by “sampling
without replacement” from M. Alternate:

1. Decode sample (w.o. replacement) from M
2. Encode sampled element using PX

until M is depleted.

L(M) = ε− log
1

2/3
+ log

1

PX(b)

− log
1

1/2
+ log

1

PX(a)

− log
1

1/1

Method: compressing M to − logPM(M) bits

Construct order information H(Xn |M) iteratively by “sampling
without replacement” from M. Alternate:

1. Decode sample (w.o. replacement) from M
2. Encode sampled element using PX

until M is depleted.

{a, b, b}

L(M) = ε

− log
1

2/3
+ log

1

PX(b)

− log
1

1/2
+ log

1

PX(a)

− log
1

1/1

Method: compressing M to − logPM(M) bits

Construct order information H(Xn |M) iteratively by “sampling
without replacement” from M. Alternate:

1. Decode sample (w.o. replacement) from M
2. Encode sampled element using PX

until M is depleted.

{a, b, b}

L(M) = ε− log
1

2/3

+ log
1

PX(b)

− log
1

1/2
+ log

1

PX(a)
− log

1

1/1

Method: compressing M to − logPM(M) bits

Construct order information H(Xn |M) iteratively by “sampling
without replacement” from M. Alternate:

1. Decode sample (w.o. replacement) from M
2. Encode sampled element using PX

until M is depleted.

{a, b}

L(M) = ε− log
1

2/3
+ log

1

PX(b)

− log
1

1/2
+ log

1

PX(a)
− log

1

1/1

Method: compressing M to − logPM(M) bits

Construct order information H(Xn |M) iteratively by “sampling
without replacement” from M. Alternate:

1. Decode sample (w.o. replacement) from M
2. Encode sampled element using PX

until M is depleted.

{a, b}

L(M) = ε− log
1

2/3
+ log

1

PX(b)
− log

1

1/2

+ log
1

PX(a)
− log

1

1/1

Method: compressing M to − logPM(M) bits

Construct order information H(Xn |M) iteratively by “sampling
without replacement” from M. Alternate:

1. Decode sample (w.o. replacement) from M
2. Encode sampled element using PX

until M is depleted.

{b}

L(M) = ε− log
1

2/3
+ log

1

PX(b)
− log

1

1/2
+ log

1

PX(a)

− log
1

1/1

Method: compressing M to − logPM(M) bits

Construct order information H(Xn |M) iteratively by “sampling
without replacement” from M. Alternate:

1. Decode sample (w.o. replacement) from M
2. Encode sampled element using PX

until M is depleted.

{b}

L(M) = ε− log
1

2/3
+ log

1

PX(b)
− log

1

1/2
+ log

1

PX(a)
− log

1

1/1

Method: compressing M to − logPM(M) bits

Construct order information H(Xn |M) iteratively by “sampling
without replacement” from M. Alternate:

1. Decode sample (w.o. replacement) from M
2. Encode sampled element using PX

until M is depleted.

{}

L(M) = ε− log
1

2/3
+ log

1

PX(b)2
− log

1

1/2
+ log

1

PX(a)
− log

1

1/1

Method: compressing M to − logPM(M) bits

Construct order information H(Xn |M) iteratively by “sampling
without replacement” from M. Alternate:

1. Decode sample (w.o. replacement) from M
2. Encode sampled element using PX

until M is depleted.

{}

L(M) = ε+ log
1

PX(b)2PX(a)
− log

1

(2/3)(1/2)(1/1)

− log
1

2/3
− log

1

1/2
+ log

1

PX(a)
− log

1

1/1

Method: compressing M to − logPM(M) bits

Construct order information H(Xn |M) iteratively by “sampling
without replacement” from M. Alternate:

1. Decode sample (w.o. replacement) from M
2. Encode sampled element using PX

until M is depleted.

{}

L(M) = ε+ log
1

PXn(bab)
− log

1

PXn |M(bab | {a, b, b})

− log
1

2/3
− log

1

1/2
+ log

1

PX(a)
− log

1

1/1

Method: compressing M to − logPM(M) bits

Construct order information H(Xn |M) iteratively by “sampling
without replacement” from M. Alternate:

1. Decode sample (w.o. replacement) from M
2. Encode sampled element using PX

until M is depleted.

{}

L(M) = ε+ log
1

PM({a, b, b})

− log
1

2/3
− log

1

1/2
+ log

1

PX(a)
− log

1

1/1

Experiments

Experiments: Synthetic multisets (rate)

Achieves H(M) = E[− logPM(M)] on single M

600 800 1000 1200 1400 1600

Multiset size |M|

211

212

213

214
B

it
s

|A| = 210

|A| = 213

|A| = 217Compressed size

Information content

Experiments: Synthetic multisets (complexity)

Average complexities

O(logm) to sample from M, where m = # unique symbols in M

O(p) to encode/decode with PX

O(np+ n logm) total complexity to encode/decode M

Encode + decode time for fixed m = 512

210 212 214 216

Alphabet size |A|

0.0

0.2

0.4

0.6

0.8

S
ec

o
n

d
s

Multiset size |M|
2048

1024

512

Compute time doesn’t scale with |A|, if m is fixed

Experiments: Synthetic multisets (complexity)

Average complexities

O(logm) to sample from M, where m = # unique symbols in M
O(p) to encode/decode with PX

O(np+ n logm) total complexity to encode/decode M

Encode + decode time for fixed m = 512

210 212 214 216

Alphabet size |A|

0.0

0.2

0.4

0.6

0.8

S
ec

o
n

d
s

Multiset size |M|
2048

1024

512

Compute time doesn’t scale with |A|, if m is fixed

Experiments: Synthetic multisets (complexity)

Average complexities

O(logm) to sample from M, where m = # unique symbols in M
O(p) to encode/decode with PX

O(np+ n logm) total complexity to encode/decode M

Encode + decode time for fixed m = 512

210 212 214 216

Alphabet size |A|

0.0

0.2

0.4

0.6

0.8

S
ec

o
n

d
s

Multiset size |M|
2048

1024

512

Compute time doesn’t scale with |A|, if m is fixed

Experiments: Synthetic multisets (complexity)

Average complexities

O(logm) to sample from M, where m = # unique symbols in M
O(p) to encode/decode with PX

O(np+ n logm) total complexity to encode/decode M

Encode + decode time for fixed m = 512

210 212 214 216

Alphabet size |A|

0.0

0.2

0.4

0.6

0.8

S
ec

o
n

d
s

Multiset size |M|
2048

1024

512

Compute time doesn’t scale with |A|, if m is fixed

Experiments: Synthetic multisets (complexity)

Average complexities

O(logm) to sample from M, where m = # unique symbols in M
O(p) to encode/decode with PX

O(np+ n logm) total complexity to encode/decode M

Encode + decode time for fixed m = 512

210 212 214 216

Alphabet size |A|

0.0

0.2

0.4

0.6

0.8

S
ec

o
n

d
s

Multiset size |M|
2048

1024

512

Compute time doesn’t scale with |A|, if m is fixed

Experiments: MNIST images with WebP

Symbols Xi can be images, text, or anything else.

Lossy codecs like WebP/JPEG can replace encoding with PX

100 102 104

Multiset size n

10 B

100 B

1 kB

10 kB

O
rd

er
in

fo
rm

at
io

n
(b

it
s) H(Xn|M)

Achieved MNIST

Method removes all order information H(Xn |M)

Experiments: MNIST images with WebP

Symbols Xi can be images, text, or anything else.

Lossy codecs like WebP/JPEG can replace encoding with PX

100 102 104

Multiset size n

10 B

100 B

1 kB

10 kB

O
rd

er
in

fo
rm

at
io

n
(b

it
s) H(Xn|M)

Achieved MNIST

Method removes all order information H(Xn |M)

Experiments: MNIST images with WebP

Symbols Xi can be images, text, or anything else.

Lossy codecs like WebP/JPEG can replace encoding with PX

100 102 104

Multiset size n

10 B

100 B

1 kB

10 kB
O

rd
er

in
fo

rm
at

io
n

(b
it

s) H(Xn|M)

Achieved MNIST

Method removes all order information H(Xn |M)

Experiments: JSON maps as nested multisets

Symbols Xi can be multisets themselves (as in JSON maps)

This means M is a multiset of multisets
Method naturally extends to this case

100 102 104

Multiset size n

10 B

100 B

1 kB

10 kB

O
rd

er
in

fo
rm

at
io

n
(b

it
s) H(Xn|M)

Achieved MNIST

Achieved JSON

Method removes all order information H(Xn |M)

Experiments: JSON maps as nested multisets

Symbols Xi can be multisets themselves (as in JSON maps)
This means M is a multiset of multisets

Method naturally extends to this case

100 102 104

Multiset size n

10 B

100 B

1 kB

10 kB

O
rd

er
in

fo
rm

at
io

n
(b

it
s) H(Xn|M)

Achieved MNIST

Achieved JSON

Method removes all order information H(Xn |M)

Experiments: JSON maps as nested multisets

Symbols Xi can be multisets themselves (as in JSON maps)
This means M is a multiset of multisets
Method naturally extends to this case

100 102 104

Multiset size n

10 B

100 B

1 kB

10 kB

O
rd

er
in

fo
rm

at
io

n
(b

it
s) H(Xn|M)

Achieved MNIST

Achieved JSON

Method removes all order information H(Xn |M)

Experiments: JSON maps as nested multisets

Symbols Xi can be multisets themselves (as in JSON maps)
This means M is a multiset of multisets
Method naturally extends to this case

100 102 104

Multiset size n

10 B

100 B

1 kB

10 kB

O
rd

er
in

fo
rm

at
io

n
(b

it
s) H(Xn|M)

Achieved MNIST

Achieved JSON

Method removes all order information H(Xn |M)

Conclusion

Conclusion

– Problem: encode M = {X1, . . . , Xn} at H(M) losslessly

– Current methods require at least O(|A|) compute

– Our method requires O(np+ n logm), independent of |A|
– It relies on BB-ANS: H(M) = H(Xn)−H(Xn |M)

– Can compress single M to − logPM(M) bits

– Symbols can be anything (e.g. images, text, multisets)

Conclusion

– Problem: encode M = {X1, . . . , Xn} at H(M) losslessly

– Current methods require at least O(|A|) compute

– Our method requires O(np+ n logm), independent of |A|
– It relies on BB-ANS: H(M) = H(Xn)−H(Xn |M)

– Can compress single M to − logPM(M) bits

– Symbols can be anything (e.g. images, text, multisets)

Conclusion

– Problem: encode M = {X1, . . . , Xn} at H(M) losslessly

– Current methods require at least O(|A|) compute

– Our method requires O(np+ n logm), independent of |A|

– It relies on BB-ANS: H(M) = H(Xn)−H(Xn |M)

– Can compress single M to − logPM(M) bits

– Symbols can be anything (e.g. images, text, multisets)

Conclusion

– Problem: encode M = {X1, . . . , Xn} at H(M) losslessly

– Current methods require at least O(|A|) compute

– Our method requires O(np+ n logm), independent of |A|
– It relies on BB-ANS: H(M) = H(Xn)−H(Xn |M)

– Can compress single M to − logPM(M) bits

– Symbols can be anything (e.g. images, text, multisets)

Conclusion

– Problem: encode M = {X1, . . . , Xn} at H(M) losslessly

– Current methods require at least O(|A|) compute

– Our method requires O(np+ n logm), independent of |A|
– It relies on BB-ANS: H(M) = H(Xn)−H(Xn |M)

– Can compress single M to − logPM(M) bits

– Symbols can be anything (e.g. images, text, multisets)

Conclusion

– Problem: encode M = {X1, . . . , Xn} at H(M) losslessly

– Current methods require at least O(|A|) compute

– Our method requires O(np+ n logm), independent of |A|
– It relies on BB-ANS: H(M) = H(Xn)−H(Xn |M)

– Can compress single M to − logPM(M) bits

– Symbols can be anything (e.g. images, text, multisets)

Thank you!

James TownsendDaniel Severo

Alireza MakhzaniAshish Khisti Karen Ullrich

Presented by: dsevero.com and j-towns.github.io

Code: github.com/facebookresearch/multiset-compression

https://dsevero.com
https://j-towns.github.io
https://github.com/facebookresearch/multiset-compression

	Problem setting
	Motivation
	Background
	Asymmetric Numeral Systems (ANS)
	Bits-back with ANS
	Multiset entropy

	Method
	Experiments
	Conclusion

