Compressing Multisets with Large Alphabets

Daniel Severo ${ }^{123}$ James Townsend ${ }^{4}$
Ashish Khisti ${ }^{2}$ Alireza Makhzani ${ }^{23}$ Karen Ullrich ${ }^{1}$
${ }^{1}$ Meta AI $\quad{ }^{2}$ University of Toronto
${ }^{3}$ Vector Institute for AI ${ }^{4}$ University of Amsterdam
Data Compression Conference, 2022

Outline

1. Problem setting
2. Motivation
3. Background

Asymmetric Numeral Systems (ANS)
Bits-back with ANS
Multiset entropy
4. Method
5. Experiments
6. Conclusion

Problem setting

Problem setting

Given a sequence of i.i.d. symbols $X^{n}=\left(X_{1}, \ldots, X_{n}\right)$ with entropy

$$
H\left(X^{n}\right)=n H(X)=n \mathbb{E}\left[-\log P_{X}(X)\right]
$$

Problem setting

Given a sequence of i.i.d. symbols $X^{n}=\left(X_{1}, \ldots, X_{n}\right)$ with entropy

$$
H\left(X^{n}\right)=n H(X)=n \mathbb{E}\left[-\log P_{X}(X)\right]
$$

we want to losslessly compress the multiset

$$
\mathcal{M}=f\left(X^{n}\right)=\left\{X_{1}, \ldots, X_{n}\right\}
$$

at rate $H(\mathcal{M}) \leq H\left(X^{n}\right)$.

Motivation

Motivation

How to achieve $H(\mathcal{M}) \leq H\left(X^{n}\right)$?

Motivation

How to achieve $H(\mathcal{M}) \leq H\left(X^{n}\right)$?

- Steinruecken (2016): rate-optimal for any alphabet \mathcal{A}

Motivation

How to achieve $H(\mathcal{M}) \leq H\left(X^{n}\right)$?

- Steinruecken (2016): rate-optimal for any alphabet \mathcal{A}
- Compress frequency count of symbols in \mathcal{M} (vector in $\mathbb{N}^{|\mathcal{A}|}$)

Motivation

How to achieve $H(\mathcal{M}) \leq H\left(X^{n}\right)$?

- Steinruecken (2016): rate-optimal for any alphabet \mathcal{A}
- Compress frequency count of symbols in \mathcal{M} (vector in $\mathbb{N}^{|\mathcal{A}|}$)
- Inefficient when $|\mathcal{A}| \gg n$, requires $\mathcal{O}(|\mathcal{A}|)$ steps

Motivation

How to achieve $H(\mathcal{M}) \leq H\left(X^{n}\right)$?

- Steinruecken (2016): rate-optimal for any alphabet \mathcal{A}
- Compress frequency count of symbols in \mathcal{M} (vector in $\mathbb{N}^{|\mathcal{A}|}$)
- Inefficient when $|\mathcal{A}| \gg n$, requires $\mathcal{O}(|\mathcal{A}|)$ steps
- Compress X^{n} instead: efficient, if X_{i} are i.i.d.

Motivation

How to achieve $H(\mathcal{M}) \leq H\left(X^{n}\right)$?

- Steinruecken (2016): rate-optimal for any alphabet \mathcal{A}
- Compress frequency count of symbols in \mathcal{M} (vector in $\mathbb{N}^{|\mathcal{A}|}$)
- Inefficient when $|\mathcal{A}| \gg n$, requires $\mathcal{O}(|\mathcal{A}|)$ steps
- Compress X^{n} instead: efficient, if X_{i} are i.i.d.
- Entropy code each X_{i} with $P_{X}\left(X_{i}\right)$, requires $\mathcal{O}(n)$ steps

Motivation

How to achieve $H(\mathcal{M}) \leq H\left(X^{n}\right)$?

- Steinruecken (2016): rate-optimal for any alphabet \mathcal{A}
- Compress frequency count of symbols in \mathcal{M} (vector in $\mathbb{N}^{|\mathcal{A}|}$)
- Inefficient when $|\mathcal{A}| \gg n$, requires $\mathcal{O}(|\mathcal{A}|)$ steps
- Compress X^{n} instead: efficient, if X_{i} are i.i.d.
- Entropy code each X_{i} with $P_{X}\left(X_{i}\right)$, requires $\mathcal{O}(n)$ steps
- Sub-optimal, achieves $H\left(X^{n}\right) \geq H(\mathcal{M})$

Motivation

How to achieve $H(\mathcal{M}) \leq H\left(X^{n}\right)$?

- Steinruecken (2016): rate-optimal for any alphabet \mathcal{A}
- Compress frequency count of symbols in \mathcal{M} (vector in $\mathbb{N}^{|\mathcal{A}|}$)
- Inefficient when $|\mathcal{A}| \gg n$, requires $\mathcal{O}(|\mathcal{A}|)$ steps
- Compress X^{n} instead: efficient, if X_{i} are i.i.d.
- Entropy code each X_{i} with $P_{X}\left(X_{i}\right)$, requires $\mathcal{O}(n)$ steps
- Sub-optimal, achieves $H\left(X^{n}\right) \geq H(\mathcal{M})$

Would like efficient, rate-optimal method for any \mathcal{A}, n.

Background

Background: Asymmetric Numeral Systems (ANS)

ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

Background: Asymmetric Numeral Systems (ANS)

ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

To encode $X=x$ with P_{X} and CDF F_{X},

	AC

Background: Asymmetric Numeral Systems (ANS)

ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

To encode $X=x$ with P_{X} and CDF F_{X},

	AC	ANS
statistics	range $\left[F_{X}(x), F_{X}(x)+P_{X}(x)\right)$	
state	fraction 0.1001 \quad integer 1001	

Background: Asymmetric Numeral Systems (ANS)

ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

To encode $X=x$ with P_{X} and CDF F_{X},

	AC	ANS
statistics	range $\left[F_{X}(x), F_{X}(x)+P_{X}(x)\right)$	
state	fraction 0.1001	integer 1001
order	queue-like	stack-like

Background: Asymmetric Numeral Systems (ANS)

Key difference: ANS decodes in reverse order

Background: Bits-back with ANS (BB-ANS)

Problem: Given $Y=(X, Z)$, encode X at rate $R_{X}=H(X)$

Background: Bits-back with ANS (BB-ANS)

Problem: Given $Y=(X, Z)$, encode X at rate $R_{X}=H(X)$ using

- code for Y at rate $H(Y)=H(X, Z)$

Background: Bits-back with ANS (BB-ANS)

Problem: Given $Y=(X, Z)$, encode X at rate $R_{X}=H(X)$ using

- code for Y at rate $H(Y)=H(X, Z)$ and
- code for Z at rate $H(Z \mid X)$

Background: Bits-back with ANS (BB-ANS)

Problem: Given $Y=(X, Z)$, encode X at rate $R_{X}=H(X)$ using

- code for Y at rate $H(Y)=H(X, Z)$ and
- code for Z at rate $H(Z \mid X)$

BB-ANS (Townsend, 2019) achieves $H(X)$ for i.i.d. X_{1}, \ldots, X_{n}

Background: Bits-back with ANS (BB-ANS)

Problem: Given $Y=(X, Z)$, encode X at rate $R_{X}=H(X)$ using

- code for Y at rate $H(Y)=H(X, Z)$ and
- code for Z at rate $H(Z \mid X)$

BB-ANS (Townsend, 2019) achieves $H(X)$ for i.i.d. X_{1}, \ldots, X_{n} Use ANS stack as a random seed to sample Z_{1}, \ldots, Z_{n}

Background: Bits-back with ANS (BB-ANS)

Problem: Given $Y=(X, Z)$, encode X at rate $R_{X}=H(X)$ using

- code for Y at rate $H(Y)=H(X, Z)$ and
- code for Z at rate $H(Z \mid X)$

BB-ANS (Townsend, 2019) achieves $H(X)$ for i.i.d. X_{1}, \ldots, X_{n} Use ANS stack as a random seed to sample Z_{1}, \ldots, Z_{n} Encode $\left(X_{1}, Z_{2}\right), \ldots,\left(X_{n}, Z_{n}\right)$ onto the ANS stack

Background: Bits-back with ANS (BB-ANS)

Problem: Given $Y=(X, Z)$, encode X at rate $R_{X}=H(X)$ using

- code for Y at rate $H(Y)=H(X, Z)$ and
- code for Z at rate $H(Z \mid X)$

BB-ANS (Townsend, 2019) achieves $H(X)$ for i.i.d. X_{1}, \ldots, X_{n} Use ANS stack as a random seed to sample Z_{1}, \ldots, Z_{n} Encode $\left(X_{1}, Z_{2}\right), \ldots,\left(X_{n}, Z_{n}\right)$ onto the ANS stack

BB-ANS encoding

Background: Bits-back with ANS (BB-ANS)

Problem: Given $Y=(X, Z)$, encode X at rate $R_{X}=H(X)$ using

- code for Y at rate $H(Y)=H(X, Z)$ and
- code for Z at rate $H(Z \mid X)$

BB-ANS (Townsend, 2019) achieves $H(X)$ for i.i.d. X_{1}, \ldots, X_{n} Use ANS stack as a random seed to sample Z_{1}, \ldots, Z_{n} Encode $\left(X_{1}, Z_{2}\right), \ldots,\left(X_{n}, Z_{n}\right)$ onto the ANS stack

BB-ANS decoding

Background: Bits-back with ANS (BB-ANS)

The full picture

BB-ANS encoding

Background: Bits-back with ANS (BB-ANS)

The full picture, with one-time overhead of $+\frac{1}{n} H(Z \mid X)$

Legend
available to decode
missing some bits

BB-ANS encoding

Background: Bits-back with ANS (BB-ANS)

The full picture, with one-time overhead of $+\frac{1}{n} H(Z \mid X)$

Legend
available to decode
missing some bits
\(\left.\left|\begin{array}{|c|}\hline X_{1}, Z_{1}

\hline\end{array} \stackrel{-H(X)}{\rightleftarrows}\right|\)| X_{2}, Z_{2} |
| :---: |
| X_{1}, Z_{1} | \right\rvert\, | $-(n-1) H(X)$ |
| :---: |
| $\frac{X_{2}, Z_{2}}{\rightleftarrows}$ |
| X_{1}, Z_{1} |

Background: Bits-back with ANS (BB-ANS)

Take-away: BB-ANS gives an operational meaning to the identity

$$
\begin{aligned}
& \qquad H(X)=H(X, Z)-H(Z \mid X)=I(X ; Y) \\
& \text { where } Y=(X, Z)
\end{aligned}
$$

Background: Multiset entropy

How does $H(\mathcal{M})=H\left(f\left(X^{n}\right)\right)$ relate to $H\left(X^{n}\right)$?

Background: Multiset entropy

How does $H(\mathcal{M})=H\left(f\left(X^{n}\right)\right)$ relate to $H\left(X^{n}\right)$?

$$
\begin{aligned}
H\left(X^{n}, \mathcal{M}\right) & =H(\mathcal{M})+H\left(X^{n} \mid \mathcal{M}\right) \\
& =H\left(X^{n}\right)+\underbrace{H\left(\mathcal{M} \mid X^{n}\right)}_{=0}
\end{aligned}
$$

Background: Multiset entropy

How does $H(\mathcal{M})=H\left(f\left(X^{n}\right)\right)$ relate to $H\left(X^{n}\right)$?

$$
\begin{aligned}
H\left(X^{n}, \mathcal{M}\right) & =H(\mathcal{M})+H\left(X^{n} \mid \mathcal{M}\right) \\
& =H\left(X^{n}\right)+\underbrace{H\left(\mathcal{M} \mid X^{n}\right)}_{=0}
\end{aligned}
$$

Multiset entropy

$$
H(\mathcal{M})=H\left(X^{n}\right)-H\left(X^{n} \mid \mathcal{M}\right)
$$

Background: Multiset entropy

How does $H(\mathcal{M})=H\left(f\left(X^{n}\right)\right)$ relate to $H\left(X^{n}\right)$?

$$
\begin{aligned}
H\left(X^{n}, \mathcal{M}\right) & =H(\mathcal{M})+H\left(X^{n} \mid \mathcal{M}\right) \\
& =H\left(X^{n}\right)+\underbrace{H\left(\mathcal{M} \mid X^{n}\right)}_{=0}
\end{aligned}
$$

Multiset entropy

$$
H(\mathcal{M})=H\left(X^{n}\right)-H\left(X^{n} \mid \mathcal{M}\right)
$$

$H\left(X^{n} \mid \mathcal{M}\right)$ bits are needed to order symbols in \mathcal{M} to create X^{n}

Background: Multiset entropy

How does $H(\mathcal{M})=H\left(f\left(X^{n}\right)\right)$ relate to $H\left(X^{n}\right)$?

$$
\begin{aligned}
H\left(X^{n}, \mathcal{M}\right) & =H(\mathcal{M})+H\left(X^{n} \mid \mathcal{M}\right) \\
& =H\left(X^{n}\right)+\underbrace{H\left(\mathcal{M} \mid X^{n}\right)}_{=0}
\end{aligned}
$$

Multiset entropy

$$
H(\mathcal{M})=H\left(X^{n}\right)-H\left(X^{n} \mid \mathcal{M}\right)
$$

$H\left(X^{n} \mid \mathcal{M}\right)$ bits are needed to order symbols in \mathcal{M} to create X^{n}
It is often called the "order information"

Method

Method: overview

Recap: BB-ANS gives an operational meaning to the identity

$$
H(X)=H(X, Z)-H(Z \mid X)=I(X ; Y)
$$

Method: overview

Recap: BB-ANS gives an operational meaning to the identity

$$
H(X)=H(X, Z)-H(Z \mid X)=I(X ; Y)
$$

Multiset entropy:

$$
H(\mathcal{M})=H\left(X^{n}\right)-H\left(X^{n} \mid \mathcal{M}\right)=I\left(\mathcal{M} ; X^{n}\right)
$$

Method: overview

Recap: BB-ANS gives an operational meaning to the identity

$$
H(X)=H(X, Z)-H(Z \mid X)=I(X ; Y)
$$

Multiset entropy:

$$
H(\mathcal{M})=H\left(X^{n}\right)-H\left(X^{n} \mid \mathcal{M}\right)=I\left(\mathcal{M} ; X^{n}\right)
$$

Naive method: apply BB-ANS for multiset compression

Method: overview

Recap: BB-ANS gives an operational meaning to the identity

$$
H(X)=H(X, Z)-H(Z \mid X)=I(X ; Y)
$$

Multiset entropy:

$$
H(\mathcal{M})=H\left(X^{n}\right)-H\left(X^{n} \mid \mathcal{M}\right)=I\left(\mathcal{M} ; X^{n}\right)
$$

Naive method: apply BB-ANS for multiset compression
Achieves $H(\mathcal{M})$ on sequence of multisets $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots$

Method: overview

Recap: BB-ANS gives an operational meaning to the identity

$$
H(X)=H(X, Z)-H(Z \mid X)=I(X ; Y)
$$

Multiset entropy:

$$
H(\mathcal{M})=H\left(X^{n}\right)-H\left(X^{n} \mid \mathcal{M}\right)=I\left(\mathcal{M} ; X^{n}\right)
$$

Naive method: apply BB-ANS for multiset compression
Achieves $H(\mathcal{M})$ on sequence of multisets $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots$
Can we achieve $H(\mathcal{M})$ on a single multiset $\mathcal{M}=f\left(X^{n}\right)$?

Method: overview

Recap: BB-ANS gives an operational meaning to the identity

$$
H(X)=H(X, Z)-H(Z \mid X)=I(X ; Y)
$$

Multiset entropy:

$$
H(\mathcal{M})=H\left(X^{n}\right)-H\left(X^{n} \mid \mathcal{M}\right)=I\left(\mathcal{M} ; X^{n}\right)
$$

Naive method: apply BB-ANS for multiset compression
Achieves $H(\mathcal{M})$ on sequence of multisets $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots$
Can we achieve $H(\mathcal{M})$ on a single multiset $\mathcal{M}=f\left(X^{n}\right)$?
In other words, can we compress \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits?

Method: compressing \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

Construct order information $H\left(X^{n} \mid \mathcal{M}\right)$ iteratively by "sampling without replacement" from \mathcal{M}. Alternate:

1. Decode sample (w.o. replacement) from \mathcal{M}
2. Encode sampled element using P_{X} until \mathcal{M} is depleted.

Method: compressing \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

Construct order information $H\left(X^{n} \mid \mathcal{M}\right)$ iteratively by "sampling without replacement" from \mathcal{M}. Alternate:

1. Decode sample (w.o. replacement) from \mathcal{M}
2. Encode sampled element using P_{X} until \mathcal{M} is depleted.

$$
\{a, b, b\}
$$

$L(\mathcal{M})=\varepsilon$

Method: compressing \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

Construct order information $H\left(X^{n} \mid \mathcal{M}\right)$ iteratively by "sampling without replacement" from \mathcal{M}. Alternate:

1. Decode sample (w.o. replacement) from \mathcal{M}
2. Encode sampled element using P_{X} until \mathcal{M} is depleted.

$$
\{a, b, b\}
$$

$L(\mathcal{M})=\varepsilon-\log \frac{1}{2 / 3}$

Method: compressing \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

Construct order information $H\left(X^{n} \mid \mathcal{M}\right)$ iteratively by "sampling without replacement" from \mathcal{M}. Alternate:

1. Decode sample (w.o. replacement) from \mathcal{M}
2. Encode sampled element using P_{X}
until \mathcal{M} is depleted.

$L(\mathcal{M})=\varepsilon-\log \frac{1}{2 / 3}+\log \frac{1}{P_{X}(\mathrm{~b})}$

Method: compressing \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

Construct order information $H\left(X^{n} \mid \mathcal{M}\right)$ iteratively by "sampling without replacement" from \mathcal{M}. Alternate:

1. Decode sample (w.o. replacement) from \mathcal{M}
2. Encode sampled element using P_{X} until \mathcal{M} is depleted.

$$
\{a, b\}
$$

$L(\mathcal{M})=\varepsilon-\log \frac{1}{2 / 3}+\log \frac{1}{P_{X}(\mathrm{~b})}-\log \frac{1}{1 / 2}$

Method: compressing \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

Construct order information $H\left(X^{n} \mid \mathcal{M}\right)$ iteratively by "sampling without replacement" from \mathcal{M}. Alternate:

1. Decode sample (w.o. replacement) from \mathcal{M}
2. Encode sampled element using P_{X}
until \mathcal{M} is depleted.

\{b\}
$L(\mathcal{M})=\varepsilon-\log \frac{1}{2 / 3}+\log \frac{1}{P_{X}(\mathrm{~b})}-\log \frac{1}{1 / 2}+\log \frac{1}{P_{X}(\mathrm{a})}$

Method: compressing \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

Construct order information $H\left(X^{n} \mid \mathcal{M}\right)$ iteratively by "sampling without replacement" from \mathcal{M}. Alternate:

1. Decode sample (w.o. replacement) from \mathcal{M}
2. Encode sampled element using P_{X} until \mathcal{M} is depleted.

\{b\}
$L(\mathcal{M})=\varepsilon-\log \frac{1}{2 / 3}+\log \frac{1}{P_{X}(\mathrm{~b})}-\log \frac{1}{1 / 2}+\log \frac{1}{P_{X}(\mathrm{a})}-\log \frac{1}{1 / 1}$

Method: compressing \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

Construct order information $H\left(X^{n} \mid \mathcal{M}\right)$ iteratively by "sampling without replacement" from \mathcal{M}. Alternate:

1. Decode sample (w.o. replacement) from \mathcal{M}
2. Encode sampled element using P_{X}
until \mathcal{M} is depleted.

$L(\mathcal{M})=\varepsilon-\log \frac{1}{2 / 3}+\log \frac{1}{P_{X}(\mathrm{~b})^{2}}-\log \frac{1}{1 / 2}+\log \frac{1}{P_{X}(\mathrm{a})}-\log \frac{1}{1 / 1}$

Method: compressing \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

Construct order information $H\left(X^{n} \mid \mathcal{M}\right)$ iteratively by "sampling without replacement" from \mathcal{M}. Alternate:

1. Decode sample (w.o. replacement) from \mathcal{M}
2. Encode sampled element using P_{X} until \mathcal{M} is depleted.

$$
L(\mathcal{M})=\varepsilon+\log \frac{1}{P_{X}(\mathrm{~b})^{2} P_{X}(\mathrm{a})}-\log \frac{1}{(2 / 3)(1 / 2)(1 / 1)}
$$

Method: compressing \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

Construct order information $H\left(X^{n} \mid \mathcal{M}\right)$ iteratively by "sampling without replacement" from \mathcal{M}. Alternate:

1. Decode sample (w.o. replacement) from \mathcal{M}
2. Encode sampled element using P_{X} until \mathcal{M} is depleted.

$L(\mathcal{M})=\varepsilon+\log \frac{1}{P_{X^{n}}(\mathrm{bab})}-\log \frac{1}{P_{X^{n} \mid \mathcal{M}}(\mathrm{bab} \mid\{\mathrm{a}, \mathrm{b}, \mathrm{b}\})}$

Method: compressing \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

Construct order information $H\left(X^{n} \mid \mathcal{M}\right)$ iteratively by "sampling without replacement" from \mathcal{M}. Alternate:

1. Decode sample (w.o. replacement) from \mathcal{M}
2. Encode sampled element using P_{X} until \mathcal{M} is depleted.

$$
L(\mathcal{M})=\varepsilon+\log \frac{1}{P_{\mathcal{M}}(\{\mathrm{a}, \mathrm{~b}, \mathrm{~b}\})}
$$

Experiments

Experiments: Synthetic multisets (rate)

Achieves $H(\mathcal{M})=\mathbb{E}\left[-\log P_{\mathcal{M}}(\mathcal{M})\right]$ on single \mathcal{M}

Experiments: Synthetic multisets (complexity)

Average complexities
$\mathcal{O}(\log m)$ to sample from \mathcal{M}, where $m=\#$ unique symbols in \mathcal{M}

Experiments: Synthetic multisets (complexity)

Average complexities
$\mathcal{O}(\log m)$ to sample from \mathcal{M}, where $m=\#$ unique symbols in \mathcal{M} $\mathcal{O}(p)$ to encode/decode with P_{X}

Experiments: Synthetic multisets (complexity)

Average complexities
$\mathcal{O}(\log m)$ to sample from \mathcal{M}, where $m=\#$ unique symbols in \mathcal{M} $\mathcal{O}(p)$ to encode/decode with P_{X}
$\mathcal{O}(n p+n \log m)$ total complexity to encode/decode \mathcal{M}

Experiments: Synthetic multisets (complexity)

Average complexities
$\mathcal{O}(\log m)$ to sample from \mathcal{M}, where $m=\#$ unique symbols in \mathcal{M} $\mathcal{O}(p)$ to encode/decode with P_{X}
$\mathcal{O}(n p+n \log m)$ total complexity to encode/decode \mathcal{M}

$$
\text { Encode }+ \text { decode time for fixed } m=512
$$

Experiments: Synthetic multisets (complexity)

Average complexities
$\mathcal{O}(\log m)$ to sample from \mathcal{M}, where $m=\#$ unique symbols in \mathcal{M}
$\mathcal{O}(p)$ to encode/decode with P_{X}
$\mathcal{O}(n p+n \log m)$ total complexity to encode/decode \mathcal{M}

$$
\text { Encode }+ \text { decode time for fixed } m=512
$$

Compute time doesn't scale with $|\mathcal{A}|$, if m is fixed

Experiments: MNIST images with WebP

Symbols X_{i} can be images, text, or anything else.

Experiments: MNIST images with WebP

Symbols X_{i} can be images, text, or anything else.
Lossy codecs like WebP/JPEG can replace encoding with P_{X}

Experiments: MNIST images with WebP

Symbols X_{i} can be images, text, or anything else.
Lossy codecs like WebP/JPEG can replace encoding with P_{X}

Method removes all order information $H\left(X^{n} \mid \mathcal{M}\right)$

Experiments: JSON maps as nested multisets

Symbols X_{i} can be multisets themselves (as in JSON maps)

Experiments: JSON maps as nested multisets

Symbols X_{i} can be multisets themselves (as in JSON maps) This means \mathcal{M} is a multiset of multisets

Experiments: JSON maps as nested multisets

Symbols X_{i} can be multisets themselves (as in JSON maps)
This means \mathcal{M} is a multiset of multisets
Method naturally extends to this case

Experiments: JSON maps as nested multisets

Symbols X_{i} can be multisets themselves (as in JSON maps)
This means \mathcal{M} is a multiset of multisets
Method naturally extends to this case

Method removes all order information $H\left(X^{n} \mid \mathcal{M}\right)$

Conclusion

Conclusion

- Problem: encode $\mathcal{M}=\left\{X_{1}, \ldots, X_{n}\right\}$ at $H(\mathcal{M})$ losslessly

Conclusion

- Problem: encode $\mathcal{M}=\left\{X_{1}, \ldots, X_{n}\right\}$ at $H(\mathcal{M})$ losslessly
- Current methods require at least $\mathcal{O}(|\mathcal{A}|)$ compute

Conclusion

- Problem: encode $\mathcal{M}=\left\{X_{1}, \ldots, X_{n}\right\}$ at $H(\mathcal{M})$ losslessly
- Current methods require at least $\mathcal{O}(|\mathcal{A}|)$ compute
- Our method requires $\mathcal{O}(n p+n \log m)$, independent of $|\mathcal{A}|$

Conclusion

- Problem: encode $\mathcal{M}=\left\{X_{1}, \ldots, X_{n}\right\}$ at $H(\mathcal{M})$ losslessly
- Current methods require at least $\mathcal{O}(|\mathcal{A}|)$ compute
- Our method requires $\mathcal{O}(n p+n \log m)$, independent of $|\mathcal{A}|$
- It relies on BB-ANS: $H(\mathcal{M})=H\left(X^{n}\right)-H\left(X^{n} \mid \mathcal{M}\right)$

Conclusion

- Problem: encode $\mathcal{M}=\left\{X_{1}, \ldots, X_{n}\right\}$ at $H(\mathcal{M})$ losslessly
- Current methods require at least $\mathcal{O}(|\mathcal{A}|)$ compute
- Our method requires $\mathcal{O}(n p+n \log m)$, independent of $|\mathcal{A}|$
- It relies on BB-ANS: $H(\mathcal{M})=H\left(X^{n}\right)-H\left(X^{n} \mid \mathcal{M}\right)$
- Can compress single \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

Conclusion

- Problem: encode $\mathcal{M}=\left\{X_{1}, \ldots, X_{n}\right\}$ at $H(\mathcal{M})$ losslessly
- Current methods require at least $\mathcal{O}(|\mathcal{A}|)$ compute
- Our method requires $\mathcal{O}(n p+n \log m)$, independent of $|\mathcal{A}|$
- It relies on BB-ANS: $H(\mathcal{M})=H\left(X^{n}\right)-H\left(X^{n} \mid \mathcal{M}\right)$
- Can compress single \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits
- Symbols can be anything (e.g. images, text, multisets)

Thank you!

© Meta

$\int \begin{aligned} & \text { VECTOR } \\ & \text { INSTITUTE }\end{aligned}$

Presented by: dsevero.com and j-towns.github.io
Code: github.com/facebookresearch/multiset-compression

