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Introduction

m Quantization: dividing the source into different regions (using
decision levels), with a representation level for each region.

m Example: [—1,1] is split as [—1, t), [t, 1]
m Decision (encoder) and representative (decoder) levels decided
based on some objective.
m Classical quantization setting: encoder and decoder objectives
are aligned.
m Example: minimize E{(x — y)?}, where x is quantized to y
m Strategic quantization: encoder and decoder objectives are
misaligned.
m Example: encoder distortion E{(x3 — y)?}, decoder distortion
E{(x - y)?}
m Strategic quantization without cardinality constraint on the
message space is the Bayesian persuasion setting.
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Strategic quantization problem

Source X € X with probability distribution Px
Quantizer @ : X — Z maps X to a message in a discrete set
Z € Z, with cardinality constraint |Z| < M.

m Example: [-1,¢) to 1 and [t,1] to 2
Decoder generates reconstruction Y € ) based on the
message Z received, to minimize decoder distortion.
Misaligned encoder and decoder distortion functions,
ne(Xa Y) 7é nd(X7 Y)'
Encoder designs @ before seeing the realization of X, based
only on statistics and the objectives.
Design of Q involves design of decision levels by the encoder,
knowing that the decoder will choose representative levels.
Distortion functions 7. and 7y, shared prior Px, quantizer @
are common knowledge
What is @ at the equilibrium?
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Timing of the game

Encoder designs a quantizer @, based on common knowledge
(Distortion functions 7. and 74, shared prior Px) and
announces it to the decoder.

Encoder observes a realization of X and generates a message
z € Z through the announced quantizer @ : X — Z and
transmits to the decoder noiselessly.

Decoder observes z € Z, takes action r € R.
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Dynamic programming for non-strategic quantization

Iterative solutions (Lloyd-Max)!

Dynamic programming was used to avoid the local optima
issues in Lloyd-Max algorithm.?

Fixed rate and variable rate constraints were designed.3

Complexity reduction with an assumption on the distortion

measure.*

1Gersho and Gray. Vector quantization and signal compression. Springer
Science & Business Media, 2012.

2Bruce. Optimum quantization. Tech. rep. MIT Research Laboratory of
Electronics, 1965.

3Sharma. “Design of absolutely optimal quantizers for a wide class of
distortion measures”. In: /EEE Trans. on Inf. Th. (1978).

*Wu. “Quantizer monotonicities and globally optimal scalar quantizer
design”. In: IEEE Trans. on Inf. Th. (1993).
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A toy example

m X ~ U[-1,]]

m M=3

m 7e(x,y) = (* = )%, na(x,y) = (x = y)?

m Boundaries parameterized as [—1,n),[r, r2), [r2, 1].

m Decoder reconstructions: y; = =5,y = 42 s = 2AL
m Cost function: J(r1,n) =

S5 (0 = 58Pl 4 [ (P — 25 P+ [A(u — 25 du

-1
m KKT optimality conditions grj g—é =0

m Only non-degenerate solution: r = —0.7403, r, = 0.7403
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A toy example

m Iteratively enforcing optimality conditions (Lloyd-Max-I) for
the encoder and decoder: r | —1land n 11

m Does not yield a locally optimal solution since any
perturbation of 1 = —1, » = 1 would be preferred by the
encodertorn =—1,mn =1.

m Dynamic programming based algorithms that yield the
globally optimal solutions of this problem.>®

®Bruce. Optimum quantization. Tech. rep. MIT Research Laboratory of
Electronics, 1965.

6Sharma. “Design of absolutely optimal quantizers for a wide class of
distortion measures”. In: /EEE Trans. on Inf. Th: (1978).
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Dynamic Programming

Assumption: Equilibrium quantizer consists of intervals (convex
code-cells).

m Required for dynamic programming derivations presented here.

m Part of the regularity condition in nonstrategic quantization
literature.

m The other condition (not assumed here): the representation
level lies within the interval considered.

Bellman equations: dividing the interval [rp, ] into [ry, t) and

[t, o]
m Dp(rp, ) = rtrélon (Dm—1(ro, t) + Di(t, o))
n<t<a
m rmo1(ro, @) = arg r(r;in[Dm_l(ro, t) + Di(t, o)]
te

n<ta
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Fixed rate constraint: |Z| < M

m Forward pass: (m — 1) decision level for m level quantization
of all possible intervals in X.

m Backward pass: optimal decision levels.

m Representative levels found by minimizing decoder'’s
distortion, y, = arg minE(ng(X, Y)), for each interval.
tey
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Variable rate constraint: — [ log7d(7) < Hp

m Any quantizer induces a distribution 7 over the messages
given the prior probability of the source.
m The 1—level distortion is modified from D;(a, 3) to
Dl(Oé, ﬂ) + )\H]_(O[, 5)
m )\ - Lagrange parameter
m Hi(a, B) - entropy of quantizing the interval [a, §) to 1 level
m The same steps as fixed rate is followed, with iterations over
M =2 3, ... until convergence in
D()\, M) = DM(Xl, XK) + )\le(Xl,XK).
m Assumption: the distortion-rate function, D(\, M), of the
optimal quantizer is convex.
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Numerical results: Fixed rate
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(a)X ~ U[0,1] (b)X ~ N(0,1)

Figure: Fixed rate quantization of a uniform and a Gaussian source, for

ne(x,y) = (x> — y)? and na(x,y) = (x — y)*.
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Numerical results: Variable rate
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Figure: Variable rate quantization of a uniform and a Gaussian source, for
ne(x,y) = (> = y)* and ng(x, y) = (x — y)*.
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Results

m Both encoder and decoder distortions monotonically decrease
with rate.”

m However, unlike their non-strategic counterpart, the distortions
stay almost constant as rate increases in the high rate region.

m This is due to the mismatch between objectives of the
encoder and the decoder - even if there was no quantization,
distortions would not vanish.

m Run time of code for M = 2,4,8,16, 32 levels of quantization
for the uniform fixed rate case without using complexity
reduction versus using complexity reduction: 156.54 seconds
versus 126.01 seconds.

"Anand and Akyol. Strategic quantization codes. 2022. URL:
https://github.com/anjuanand98/dpcodes: git.


https://github.com/anjuanand98/dpcodes.git
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Discussion

m Early non-strategic quantization literature employed dynamic
programming to avoid poor local minima issues in iterative
optimization methods such as Lloyd-Max.

m In this paper, we develop dynamic programming algorithms for
strategic quantization problem inspired by non-strategic
quantization using dynamic programming techniques.

m The usage of dynamic programming here is to resolve issues
beyond poor local optima as the iterative solution may not
even yield a locally optimal quantizer, as shown with the toy
example.
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Thank you
Please e-mail any comments/questions to
aanand6@binghamton.edu, eakyol@binghamton.edu



