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Introduction

Quantization: dividing the source into different regions (using
decision levels), with a representation level for each region.

Example: [−1, 1] is split as [−1, t), [t, 1]

Decision (encoder) and representative (decoder) levels decided
based on some objective.

Classical quantization setting: encoder and decoder objectives
are aligned.

Example: minimize E{(x − y)2}, where x is quantized to y

Strategic quantization: encoder and decoder objectives are
misaligned.

Example: encoder distortion E{(x3 − y)2}, decoder distortion
E{(x − y)2}

Strategic quantization without cardinality constraint on the
message space is the Bayesian persuasion setting.
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Strategic quantization problem

Source X ∈ X with probability distribution PX

Quantizer Q : X → Z maps X to a message in a discrete set
Z ∈ Z, with cardinality constraint |Z| ≤ M.

Example: [−1, t) to 1 and [t, 1] to 2

Decoder generates reconstruction Y ∈ Y based on the
message Z received, to minimize decoder distortion.

Misaligned encoder and decoder distortion functions,
ηe(X ,Y ) ̸= ηd(X ,Y ).

Encoder designs Q before seeing the realization of X , based
only on statistics and the objectives.

Design of Q involves design of decision levels by the encoder,
knowing that the decoder will choose representative levels.

Distortion functions ηe and ηd , shared prior PX , quantizer Q
are common knowledge

What is Q at the equilibrium?
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Timing of the game

1 Encoder designs a quantizer Q, based on common knowledge
(Distortion functions ηe and ηd , shared prior PX ) and
announces it to the decoder.

2 Encoder observes a realization of X and generates a message
z ∈ Z through the announced quantizer Q : X → Z and
transmits to the decoder noiselessly.

3 Decoder observes z ∈ Z, takes action r ∈ R.
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Dynamic programming for non-strategic quantization

Iterative solutions (Lloyd-Max)1

Dynamic programming was used to avoid the local optima
issues in Lloyd-Max algorithm.2

Fixed rate and variable rate constraints were designed.3

Complexity reduction with an assumption on the distortion
measure.4

1Gersho and Gray. Vector quantization and signal compression. Springer
Science & Business Media, 2012.

2Bruce. Optimum quantization. Tech. rep. MIT Research Laboratory of
Electronics, 1965.

3Sharma. “Design of absolutely optimal quantizers for a wide class of
distortion measures”. In: IEEE Trans. on Inf. Th. (1978).

4Wu. “Quantizer monotonicities and globally optimal scalar quantizer
design”. In: IEEE Trans. on Inf. Th. (1993).
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A toy example

X ∼ U[−1, 1]

M = 3

ηe(x , y) = (x3 − y)2, ηd(x , y) = (x − y)2

Boundaries parameterized as [−1, r1), [r1, r2), [r2, 1].

Decoder reconstructions: y1 =
−1+r1

2 , y2 =
r1+r2
2 , y3 =

r2+1
2 .

Cost function: J(r1, r2) =∫ r1
−1(u

3 − −1+r1
2 )2du +

∫ r2
r1
(u3 − r1+r2

2 )2du +
∫ 1
r2
(u3 − r2+1

2 )2du

KKT optimality conditions ∂J
∂r1

= ∂J
∂r2

= 0

Only non-degenerate solution: r1 = −0.7403, r2 = 0.7403
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A toy example

Iteratively enforcing optimality conditions (Lloyd-Max-I) for
the encoder and decoder: r1 ↓ −1 and r2 ↑ 1

Does not yield a locally optimal solution since any
perturbation of r1 = −1, r2 = 1 would be preferred by the
encoder to r1 = −1, r2 = 1.

Dynamic programming based algorithms that yield the
globally optimal solutions of this problem.56

5Bruce. Optimum quantization. Tech. rep. MIT Research Laboratory of
Electronics, 1965.

6Sharma. “Design of absolutely optimal quantizers for a wide class of
distortion measures”. In: IEEE Trans. on Inf. Th. (1978).
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Dynamic Programming

Assumption: Equilibrium quantizer consists of intervals (convex
code-cells).

Required for dynamic programming derivations presented here.

Part of the regularity condition in nonstrategic quantization
literature.

The other condition (not assumed here): the representation
level lies within the interval considered.

Bellman equations: dividing the interval [r0, α] into [r0, t) and
[t, α]

Dm(r0, α) = min
t∈O

r0<t<α

(Dm−1(r0, t) + D1(t, α))

rm−1(r0, α) = argmin
t∈O

r0<t<α

[Dm−1(r0, t) + D1(t, α)]
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Fixed rate constraint: |Z| ≤ M

Forward pass: (m− 1)th decision level for m level quantization
of all possible intervals in X .

Backward pass: optimal decision levels.

Representative levels found by minimizing decoder’s
distortion, ym = argmin

t∈Y
E(ηd(X ,Y )), for each interval.
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Variable rate constraint: −
∫
log τd(τ) ≤ H0

Any quantizer induces a distribution τ over the messages
given the prior probability of the source.

The 1−level distortion is modified from D1(α, β) to
D1(α, β) + λH1(α, β)

λ - Lagrange parameter
H1(α, β) - entropy of quantizing the interval [α, β) to 1 level

The same steps as fixed rate is followed, with iterations over
M = 2, 3, . . . until convergence in
D(λ,M) = DM(x1, xK ) + λHM(x1, xK ).

Assumption: the distortion-rate function, D(λ,M), of the
optimal quantizer is convex.
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Numerical results: Fixed rate

(a)X ∼ U[0, 1] (b)X ∼ N(0, 1)

Figure: Fixed rate quantization of a uniform and a Gaussian source, for
ηe(x , y) = (x3 − y)2 and ηd(x , y) = (x − y)2.
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Numerical results: Variable rate

(a)X ∼ U[0, 1] (b)X ∼ N(0, 1)

Figure: Variable rate quantization of a uniform and a Gaussian source, for
ηe(x , y) = (x3 − y)2 and ηd(x , y) = (x − y)2.
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Results

Both encoder and decoder distortions monotonically decrease
with rate.7

However, unlike their non-strategic counterpart, the distortions
stay almost constant as rate increases in the high rate region.

This is due to the mismatch between objectives of the
encoder and the decoder - even if there was no quantization,
distortions would not vanish.

Run time of code for M = 2, 4, 8, 16, 32 levels of quantization
for the uniform fixed rate case without using complexity
reduction versus using complexity reduction: 156.54 seconds
versus 126.01 seconds.

7Anand and Akyol. Strategic quantization codes. 2022. url:
https://github.com/anjuanand98/dpcodes.git.

https://github.com/anjuanand98/dpcodes.git
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Discussion

Early non-strategic quantization literature employed dynamic
programming to avoid poor local minima issues in iterative
optimization methods such as Lloyd-Max.

In this paper, we develop dynamic programming algorithms for
strategic quantization problem inspired by non-strategic
quantization using dynamic programming techniques.

The usage of dynamic programming here is to resolve issues
beyond poor local optima as the iterative solution may not
even yield a locally optimal quantizer, as shown with the toy
example.
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Thank you
Please e-mail any comments/questions to

aanand6@binghamton.edu, eakyol@binghamton.edu


