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ABSTRACT

Deep unfolding has recently been proposed to derive novel deep net-
work architectures from model-based approaches. In this paper, we
consider its application to multichannel source separation. We un-
fold a multichannel Gaussian mixture model (MCGMM), resulting
in a deep MCGMM computational network that directly processes
complex-valued frequency-domain multichannel audio and has an
architecture defined explicitly by a generative model, thus combin-
ing the advantages of deep networks and model-based approaches.
We further extend the deep MCGMM by modeling the GMM states
using an MRF, whose unfolded mean-field inference updates add
dynamics across layers. Experiments on source separation for mul-
tichannel mixtures of two simultaneous speakers shows that the deep
MCGMM leads to improved performance with respect to the origi-
nal MCGMM model.

Index Terms— Deep unfolding, source separation, multichan-
nel GMM, Markov random field

1. INTRODUCTION AND RELATION TO PRIOR WORK

Exploiting multiple microphones can greatly improve speech en-
hancement and recognition performance in the presence of noise,
other speakers, and reverberation. Multiple microphones enable the
use of beamforming [1], multichannel filtering [2] and clustering of
spatial features [3,4]. Multichannel versions of single-channel algo-
rithms have also been proposed, such as multichannel extensions of
nonnegative matrix factorization (NMF) [5–7].

Speech acoustic models have previously been used to opti-
mize microphone array beamformers for example, by maximizing
likelihood [8]. Recently, however, deep neural network (DNN)
speech models have been very successful for single-channel speech
enhancement [9–12] and recognition [13, 14]. Their combination
with multi-channel methods is not as straight-forward due to the
absence of a likelihood function, but there have been a few steps
in this direction. Swietojanski et al. [15] proposed a convolutional
neural network (CNN) architecture for ASR using multichannel
audio, where different microphone channels were pooled together.
Hoshen et al. [16] used a CNN-DNN for acoustic modeling on raw
time-domain multichannel audio. Nugraha et al. [17] achieved im-
proved source separation for two-channel music recordings using
alternating ReLU layers and channel estimation. However, though
DNN-based methods can be effective, they require empirical explo-
ration to determine the best network architecture. Furthermore, it
is difficult to directly incorporate domain knowledge into generic
networks.

This work was done while S. Wisdom was an intern at MERL and at
JSALT 2015 in UW, Seattle, which was supported by JHU via grants from
NSF (IIS), Google, Microsoft, Amazon, Mitsubishi Electric, and MERL.

Deep unfolding is a method that can incorporate advantages of
both neural networks and model-based methods [18]. The basic idea
is that any iterative inference algorithm for a generative model which
is run for K iterations can be “unfolded” into a K-layer compu-
tational network. The architecture and activation functions of the
intra- and inter-layer connections are completely defined by the orig-
inal generative model inference algorithm. Once the network is un-
folded, the parameters within layers can be discriminatively trained
using labeled data, just as the parameters of a DNN are discrimina-
tively trained. Deep unfolding has been shown to improve single-
channel source separation by unfolding iterative NMF multiplicative
updates [18, 19].

Other attempts have been made to combine deep networks with
generative models. Varani et al. [20] proposed a DNN where the
last layer is a GMM. The GMM parameters are discriminatively
trained jointly with the DNN parameters for ASR. Hoshen et al.’s ap-
proach [16] attempts to mimic the usual feature extraction pipeline in
ASR. However, all these methods suffer the same drawback: the op-
timal network architectures can only be discovered by heuristic ex-
perimentation, and it is difficult to directly incorporate insight from
domain knowledge.

In this paper, we consider deep unfolding for multichannel
source separation. We combine an existing model originally pro-
posed by Attias [21] with a Markov random field (MRF) and show
how unfolding inference in this model results in improved source
separation performance for multichannel mixtures of two simultane-
ous speakers. The resulting deep MCGMM computational network
directly processes complex-valued frequency-domain multichannel
audio and has an architecture defined explicitly by a generative
model, thus combining advantages of deep networks and model-
based approaches.

2. SOURCE SEPARATION USING MULTICHANNEL GMM
We assume that J acoustic sources x

j are recorded by I micro-
phones. Let Yf,t 2 CI be the complex-valued STFT coefficients of
the I microphones at frame t 2 {1..T} and frequency f 2 {1..F}.
The STFT window and FFT lengths are both taken to be Nw =

2(F � 1). The ith microphone signal is given by

Y

i
f,t =

X

j

B

i,j
f X

j
f,t + V

i
f,t, (1)

where Xj
f,t is the STFT coefficient of the jth source, V i

f,t is additive,
zero-mean, circular, complex-valued Gaussian noise, and B

i,j
f is the

value at frequency f of the FFT of the channel bi,j1:Nc
from source j to

microphone i, where we assume a narrowband channel model: that
is, the channel impulse response b

i,j
1:Nc

is shorter than the analysis
window length: Nc  Nw. By using a narrowband assumption, the
effect of the channel is a complex-valued gain B

i,j
f in each frequency

bin f for each microphone-source pair (i, j).
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Motivation  

• Deep neural networks work well for a wide variety of tasks 

• Computer vision, speech recognition, speech enhancement 

• But not many for microphone arrays (only [1]-[4]). How to 
incorporate domain knowledge? 

• How can we use deep neural networks for multichannel source 
separation?

2

Introduction

[1] Nugraha et al. 2015 
[2] Hoshen et al. 2015 

[3] Sainath et al. 2015, 2016 
[4] Xiao et al. 2016
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Approach:  

• We use a new method called “deep-unfolding” to create deep neural 
networks from generative models 

• Recently used for NMF [1] and LDA topic modeling [2] 

• We can improve the generative model, which tells us how to change 
the architecture of the neural network

3

Introduction

[1] Le Roux et al. 2015 
[2] Chen et al. 2015

Generative 
model 

inference

Deep neural 
network
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Results: 

• A meaningful and interpretable deep network that can separate 
sources in complex-valued multichannel frequency-domain. 

• Discriminative training improves performance of the original 
inference algorithm.

4

Introduction
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1. Deep unfolding overview!

2. Generative model: multichannel GMM 

3. Unfolding the multichannel GMM 

4. Results

5

Outline
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1. Deep unfolding overview

Generative 
model 

inference

Deep neural 
network

• Deep unfolding enables creation of principled and 
novel deep architectures from generative models.
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All 
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[2] Le Roux, Hershey, Weninger 2015
[1] Hershey, Le Roux, Weninger 2014

[2]

[1]

[This work]

1. Deep unfolding overview

• Deep unfolding enables creation of principled and 
novel deep architectures from generative models.
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(1)  Define model 

(2)  Derive iterative inference algorithm 

(3)  Unfold iterations into layers in a network 

(4)  Discriminatively train parameters   , tying or 
untying between layers.

!
For k=1:K, 
    Update 
!
    using              ,   , 
!
    and data

(1)

(2) (3) (4)

[1] Hershey, Le Roux, Weninger 2014

1. Deep unfolding overview

Graphical model

Iterative inference

Trained unfolded networksUnfolded network

Y i
f,t

X1
f,t

z1t

· · ·

· · ·

XJ
f,t

zJt

Bi,1:J
f,t
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1. Deep unfolding overview 

2. Generative model: multichannel GMM!

3. Unfolding the multichannel GMM 

4. Results

9

Outline
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• Multichannel GMM (MCGMM): probabilistic model 
of complex-valued multichannel STFT [1] 
• GMM source models 
• Narrowband channel model

2. Generative model: multichannel GMM

Source!
STFTs

Multinomial!
GMM source!

states

Channel!
model

Source!
STFTs

Channel!
models

Noisy multichannel !
STFT observations

Graphical modelPhysical scenario

[1] Attias 2003
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For k=1:K, estimate: 
• Source GMM state probabilities 

• Source means (complex STFTs) 
• Channel model

Iterative variational!
inference algorithm!

[1]:

2. Generative model: multichannel GMM

[1] Attias 2003
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For k=1:K, estimate: 
• Source GMM state prob.s 

• Source means 
• Channel model

2. Generative model: multichannel GMM

ss

· · · B(K�2)
f

Yf,t

�̄j,z,(K�1)
f

�j,z,(K�1)
f

µ̄j,z,(K�1)
f,t

Yf,t

Lj,z,(K�1)
t ⇡̄j,z,(K�1)

t

Aj,(K�1), bj,(K�1)

X̂(K�1)
f,t B(K�1)

f

Yf,t

· · ·�̄j,z,(K)
f

�j,z,(K)
f

µ̄j,z,(K)
f,t

Yf,t

Lj,z,(K)
t ⇡̄j,z,(K)

t

Aj,(K), bj,(K)

X̂(K)
f,t D

Layer K � 1 Layer K

Fig. 1. Last two layers of the unfolded deep MCGMM. Boxes with double lines are the discriminatively-trained source parameters, and
shaded boxes represent the observed data.

Algorithm 1: Simplified variational EM algorithm for the MCGMM,
where h(·)tit :=

1
T

PT
t=1(·)t.

Data: Multichannel mixture STFT Y1:F,1:T , sensor precision  f ,
source parameters �1:J,1:Z1:F , ⇡1:J,1:Z , initial channel estimate B

(0)
1:F

Result: Estimated source STFTs ˆX
1:J,(K)
1:F,1:T and layer-wise

intermediate variables
for k = 1 : K do

Run E-step:

�̄
j,z,(k)
f =

⇥
B

(k�1)
f

⇤H
:,j
 f

⇥
B

(k�1)
f

⇤
:,j

+ �
j,z,(k)
f (7)

µ̄
j,z,(k)
f,t =

⇥
B

(k�1)
f

⇤H
:,j
 f

�̄
j,z,(k)
f

⇣
Yf,t �

⇥
B

(k�1)
f

⇤
:,\j

ˆX
\j,(k�1)
f,t

⌘

(8)

L
j,z,(k)
t = log ⇡j,z

+

X

f

log

�
j,z,(k)
f

�̄
j,z,(k)
f

...

...+
X

f

�̄
j,z,(k)
f

���µ̄j,z,(k)
f

���
2

(9)

⇡̄
j,z,(k)
t =softmax

⇣
L
j,1:Z,(k)
t

⌘
(10)

ˆX
j,(k)
f,t =

X

z

⇡̄
j,z,(k)
t µ̄

j,z,(k)
f,t (11)

Run M-step:

ˆ

⌃

Y X
f =

D
Yf,t

�
ˆX
(k)
f,t

�HE

t
(12)

⇥
ˆ

⌃

X̂X̂
f

⇤
j,j

=

DX

z

⇡̄
j,z,(k)
t

⇣
1

�̄
j,z,(k)
f

+

���µ̄j,z,(k)
f,t

���
2 ⌘E

t

(13)

B
(k)
f =

ˆ

⌃

Y X̂
f

⇣
ˆ

⌃

X̂X̂
f

⌘�1
(14)

end

untied across layers, A(k) and b

(k), then equation (6) is equivalent
to one layer of a deep feed-forward sigmoid network. Discrimina-
tively training the A(k) and b

(k) in each layer is equivalent to finding
a different set of log potential functions for the MRF for each itera-
tion, such that the result of K iterations of inference minimizes the
discriminative cost function. The expression A

(k)
⇡̄

(k�1)
+ b

(k) is
essentially a prior on the state log-likelihoods that varies from iter-
ation to iteration, with feedback from the previously estimated state
likelihoods ⇡̄(k�1).

To apply this in our model we can replace the multinomial state
z

j
t 2 {1..Z} of a source with a MRF as in the above to make

the deep MCGMM more powerful. To do this, let each multino-
mial state z

j
t be mapped to Z binary random variables s

j,z
t in a

fully-connected MRF, where sj,1:Zt is constrained to be one-hot. We
use the variational approximation q(s

j,1:Z
t ) =

Q
z ⇡̄

j,z
t for the bi-

nary random variables s

j,z
t , with variational probabilities ⇡̄

j,z
t :=

q(s

j,z
t = 1, s

j,z0

t = 0, 8z0 6= z). Rather than using the usual mean-
field distribution for binary random variable, here we constrain the
variational posterior to behave like our multinomial GMM states. So
instead of being the variational probability of a multinomial, ⇡̄j,z

f is
the variational probability that the zth element of sj,1:Zt is set to 1,
and the other elements are set to 0. Then, if we unfold mean field in-
ference for the hidden binary states sj,zt , we replace the multinomial
prior log ⇡j,z in the update (9) with

L

j,z,(k)
prior,t = A

(k)
⇡̄

j,z,(k�1)
t + b

(k)
, (15)

where the parameters A

(k) 2 RZ⇥Z and b

(k) 2 RZ can be layer-
dependent. When A

(k)
= 0 and b

(k)
= log ⇡

j,z for all k, the new
update (16) simplifies to the original variational update (9).

The new update for Lj,z,(k)
t that replaces (9) is thus

L

j,z,(k)
t =L

j,z,(k)
prior,t + ↵L

j,z,(k)
acoustic,t, (16)

with

L

j,z,(k)
acoustic,t =

X

f

log

�

j,z,(k)
f

�̄

j,z,(k)
f

+

X

f

�̄

j,z,(k)
f

���µ̄j,z,(k)
f

���
2
. (17)

Equation (17) is the part of the log-likelihood corresponding to
acoustic information and ↵ is an “acoustic weight” that expresses
the importance of the acoustic evidence over the prior. We refer to
the resulting network as a deep MCGMM (DMCGMM).

4. EXPERIMENTS AND DISCUSSION

We use a modified version1 of the SimData and multicondition train-
ing (mcTrain) data components of the REVERB challenge dataset
[24]. Each file consists of a single-channel speech utterance from
the WSJCAM0 dataset [25] reverberated using measured 8-channel
reverberation impulse responses (RIRs) in different rooms. SimData
uses RIRs from three different rooms, and mcTrain uses RIRs from
6 different rooms. Stationary noise that was recorded in each partic-
ular room is added at 20 dB SNR. To create a dataset of overlapping
speech, a second speech signal is reverberated using a RIR from a
different position in the same room and added to the original file.
No normalization of the power of the reverberated speech sources is
performed, in order to simulate realistic conditions. The power ratio

1Thanks to Michael Mandel for generating this dataset during JSALT
2015.

[1] Attias 2003

Iterative variational!
inference algorithm!

[1]:



/22

1. Deep unfolding overview 

2. Generative model: multichannel GMM 

3. Unfolding the multichannel GMM!

4. Results
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Outline
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For k=1:K, estimate: 
• Source state probabilities 

• Source means 
• Channel model

Source 
model

14

Discriminative 
training: 
Optimize  

 
to minimize

Equation (18) is the part of the log-likelihood corresponding to
acoustic information and ↵ is an “acoustic weight” that expresses
the importance of the acoustic evidence over the prior.

4. EXPERIMENTS AND DISCUSSION

We use a modified version of the SimData and multicondition train-
ing (mcTrain) data components of the REVERB challenge dataset
[23]. Each file consists of a single-channel speech utterance from
the WSJCAM0 dataset [24] reverberated using measured reverbera-
tion impulse responses (RIR) in different rooms. SimData uses RIRs
from three different rooms, and mcTrain uses RIRs from 6 different
rooms. Stationary noise that was recorded in each particular room
is added at 20 dB SNR. To create a dataset of overlapping speech,
we add a second speech signal to each file that has been reverber-
ated using a measured RIR that corresponds to a different position in
the same room. No normalization of the power of the reverberated
speech sources is performed, in order to test realistic conditions. The
power ratio between speaker 1 and speaker 2 ranges from about �10

dB to +10 dB.
The initial source precisions �

j,z,(0)
f were trained on a gender-

specific split of the WSJCAM0 training set. That is, two separate
256-component GMMs were trained for male and female speakers.
Then these gender-specific GMMs were concatenated into a 512-
component GMM. A GMM was first trained on the log-magnitude
STFTs. Then, using the labels ` from the result, the GMM preci-
sions �z

f were set to be 1/

P

t:`(t)=z |Xf,t|2. The MRF parameters
are initialized as A

(0)
= 0 and b

(0)
= log ⇡

z . Both sources are
initialized with the same source model.

Since our main interest here is to observe the performance im-
provement of the deep MCGMM over the conventional MCGMM,
we used an oracle least-squares initialization for the channel model
for each file:

B

i,j,(0)
f =

ˆ

⌃

Y X
f

⇣

ˆ

⌃

XX
f

⌘�1
, (19)

where ˆ

⌃

Y X
f is the frequency-domain cross-covariance between the

microphone observations Yf,t and reference sources Xf,t, and ˆ

⌃

XX
f

is the covariance between the reference sources Xf,t.
For each file, 10 iterations of variational updates, as described in

Section 2, are run. The output of these iterations is fed to a network
of K = 5 simplified update layers, as described in Section 3.1. The
parameters ⇥(k)

=

n

A

(k)
, b

(k)
, �

j,z,(k)
f

o

are untied between layers
and discriminatively trained. We use an “error-to-source” (ESR) cost
function given by

DESR(Xf,t,
ˆ

X

(K)
f,t ) =

X

j

P

f,t

�

�

�

ˆ

X

j
f,t �X

j
f,t

�

�

�

2

P

f,t

�

�

�

X

j
f,t

�

�

�

2 (20)

where ˆ

X

(K)
f,t are the estimated source STFT coefficients from the last

(Kth) layer and Xf,t are the clean single-channel references. By
minimizing (20), the signal-to-noise ratio of both sources is maxi-
mized. Since many of the updates contain non-holomorphic func-
tions of the complex variables, we use Wirtinger calculus to derive
generalized gradients. Refer to the supplementary materials [25] for
a detailed description of the gradients and their derivation. To ensure
the GMM source precisions �

j,z,(k)
f remain nonnegative, we opti-

mize �

j,z,(k)
f := log �

j,z,(k)
f , and replace all instances of �

j,z,(k)
f

in the updates with exp�

j,z,(k)
f . Stochastic gradient descent is used

for backpropagation, and a gradient step is made using one mixture

file at a time. The initial learning rate is set to ⌘ = 0.02, and an
annealing schedule is used such that the learning rate for the nth file
is

⌘

(n)
=

⌘

(0)

1 + dn

(21)

where d is a constant that determines the rate of decay. For our
experiments, we set d = 1/(20 · 780). We use a momentum of 0.9.
A validation set is built from 65 randomly selected files from the
SimData development set, and its error is measured after every 78
gradient steps.

Matlab was used to implement the MCGMM variational infer-
ence algorithm, the forward pass of the deep MCGMM, and gradi-
ent computations for discriminative training. All computations are
performed on an Nvidia Titan X GPU using the Matlab Parallel Pro-
cessing Toolbox. Using this implementation, for a 10 second audio
file it takes about 5 seconds to perform the MCGMM variational al-
gorithm and about 10 seconds to perform a deep MCGMM forward
pass and backpropagation gradient computation.

Table 1 shows the resulting SNRs of the sources, averaged across
the validation set, for different numbers of discriminatively-trained
deep MCGMM layers and amounts of training data, where SNR for
time-domain estimate x̂ with reference x is defined as

SNR(x̂, x) = 10 log10

P

n x

2
n

P

n(x̂n � xn)
2
. (22)

Table 1. Source separation results for the deep MCGMM.
DMCGMM Trained Training SNR (dB)

layers layers size Src. 1 Src. 2 Avg.

No proc. — — -0.40 -1.16 -0.78
5 0 780 files 3.35 2.84 3.10
5 3 780 files 3.55 3.03 3.29
5 3 2964 files 3.57 3.00 3.29
5 4 780 files 3.61 3.06 3.34
5 5 780 files 3.69 3.16 3.43

We can see that separation performance improves as the num-
ber of discriminatively-trained layers increases. The performance
of the 3-layer network seems unaffected by the size of the training
data, which suggests that the network is at capacity in terms of its
representational power.

5. CONCLUSION AND FUTURE WORK

In this paper, we have unfolded an existing model-based variational
inference algorithm for separating multimicrophone mixtures into
a novel computational network. The resulting network was aug-
mented with deep sigmoid network-like components that estimate
source states to create the deep MCGMM. The deep MCGMM di-
rectly processes complex-valued frequency-domain inputs, and by
discriminatively training source model parameters achieves superior
performance over the model-based variational inference algorithm.

In the future, we will explore other enhancements and general-
izations of this network, including incorporation of recurrence and
LSTMs, more sophisticated versions and extensions of the model,
other types of cost functions such as cross-entropy on the source
states, and combination with automatic speech recognition systems.

Error-to-source cost

3. Unfolding the multichannel GMM

Graphical model

Iterative inference
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Fig. 1. Last two layers of the unfolded deep MCGMM. Boxes with double lines are the discriminatively-trained source parameters, and
shaded boxes represent the observed data.

Algorithm 1: Simplified variational EM algorithm for the MCGMM,
where h(·)tit :=

1
T

PT
t=1(·)t.

Data: Multichannel mixture STFT Y1:F,1:T , sensor precision  f ,
source parameters �1:J,1:Z1:F , ⇡1:J,1:Z , initial channel estimate B

(0)
1:F

Result: Estimated source STFTs ˆX
1:J,(K)
1:F,1:T and layer-wise

intermediate variables
for k = 1 : K do

Run E-step:

�̄
j,z,(k)
f =

⇥
B

(k�1)
f

⇤H
:,j
 f

⇥
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+ �
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⇥
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t = log ⇡j,z

+

X

f

log
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...
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t =softmax
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⌘
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end

each multinomial state z

j
t be mapped to Z binary random variables

s

j,z
t in a fully-connected MRF, where sj,1:Zt is constrained to be one-

hot. We use the variational approximation q(s

j,1:Z
t ) =

Q
z ⇡̄

j,z
t

for the binary random variables s

j,z
t , with variational probabilities

⇡̄

j,z
t := q(s

j,z
t = 1, s

j,z0

t = 0, 8z0 6= z). Rather than perform-
ing unconstrained mean-field updates, here for continuity with our
GMM model, we constrain the variational posterior to behave like
multinomial mixture states. As such ⇡̄

j,z
f is the variational probabil-

ity that the zth element of sj,1:Zt is set to 1, and the other elements
are set to 0. Then, if we unfold mean field inference for the hidden
binary states s

j,z
t , we replace the multinomial prior log ⇡j,z in the

update (9) with

L

j,z,(k)
prior,t = A

(k)
⇡̄

j,z,(k�1)
t + c

(k)
, (15)

where the parameters A

(k) 2 RZ⇥Z and c

(k) 2 RZ can be layer-
dependent. When A

(k)
= 0 and c

(k)
= log ⇡

j,z for all k, the
new update (16) simplifies to the original variational update (9).
Although the synchronous mean-field updates break the variational
bound, we expect discriminative training to compensate such ap-
proximations.

The new update for Lj,z,(k)
t that replaces (9) is thus

L

j,z,(k)
t =L

j,z,(k)
prior,t + ↵L

j,z,(k)
acoustic,t, (16)

with

L

j,z,(k)
acoustic,t =

X
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log
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f
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j,z,(k)
f

+

X

f

�̄

j,z,(k)
f

���µ̄j,z,(k)
f

���
2
. (17)

Equation (17) is the part of the log-likelihood corresponding to
acoustic information and ↵ is an “acoustic weight” that expresses
the importance of the acoustic evidence over the prior. We refer to
the resulting network as a deep MCGMM (DMCGMM).

4. EXPERIMENTS AND DISCUSSION
We use a modified version1 of the SimData and multicondition train-
ing (mcTrain) data components of the REVERB challenge dataset
[24]. Each file consists of a single-channel speech utterance from
the WSJCAM0 dataset [25] reverberated using measured 8-channel
reverberation impulse responses (RIRs) in different rooms. SimData
uses RIRs from three different rooms, and mcTrain uses RIRs from
6 different rooms. Stationary noise that was recorded in each partic-
ular room is added at 20 dB SNR. To create a dataset of overlapping
speech, a second speech signal is reverberated using a RIR from a
different position in the same room and added to the original file.
No normalization of the power of the reverberated speech sources is
performed, in order to simulate realistic conditions. The power ratio
between the spatial images of speaker 1 and speaker 2 ranges from
about �15 dB to +15 dB. All mixes are between 6 and 10 seconds
long. The training set contains 15763 mixes, the development set
contains 965 mixes, and the evaluation set contains 1435 mixes.

The initial source precisions �

j,z,(0)
f were trained on a gender-

specific split of the WSJCAM0 training set. That is, two separate
256-component GMMs were trained for male and female speakers.
Each GMM was first trained on the log-magnitude STFTs. Then, us-
ing the frame labels ` from the result, the GMM precisions �z

f were
set to be 1/

P
t:`(t)=z |Xf,t|2. Then these gender-specific GMMs

1Thanks to Michael Mandel for building this dataset during JSALT 2015.

One layer of unfolded network
⇡̄j,z,(k�1)
t

Equation (18) is the part of the log-likelihood corresponding to
acoustic information and ↵ is an “acoustic weight” that expresses
the importance of the acoustic evidence over the prior.

4. EXPERIMENTS AND DISCUSSION

We use a modified version of the SimData and multicondition train-
ing (mcTrain) data components of the REVERB challenge dataset
[23]. Each file consists of a single-channel speech utterance from
the WSJCAM0 dataset [24] reverberated using measured reverbera-
tion impulse responses (RIR) in different rooms. SimData uses RIRs
from three different rooms, and mcTrain uses RIRs from 6 different
rooms. Stationary noise that was recorded in each particular room
is added at 20 dB SNR. To create a dataset of overlapping speech,
we add a second speech signal to each file that has been reverber-
ated using a measured RIR that corresponds to a different position in
the same room. No normalization of the power of the reverberated
speech sources is performed, in order to test realistic conditions. The
power ratio between speaker 1 and speaker 2 ranges from about �10

dB to +10 dB.
The initial source precisions �

j,z,(0)
f were trained on a gender-

specific split of the WSJCAM0 training set. That is, two separate
256-component GMMs were trained for male and female speakers.
Then these gender-specific GMMs were concatenated into a 512-
component GMM. A GMM was first trained on the log-magnitude
STFTs. Then, using the labels ` from the result, the GMM preci-
sions �z

f were set to be 1/

P

t:`(t)=z |Xf,t|2. The MRF parameters
are initialized as A

(0)
= 0 and b

(0)
= log ⇡

z . Both sources are
initialized with the same source model.

Since our main interest here is to observe the performance im-
provement of the deep MCGMM over the conventional MCGMM,
we used an oracle least-squares initialization for the channel model
for each file:

B

i,j,(0)
f =

ˆ

⌃

Y X
f

⇣

ˆ

⌃

XX
f

⌘�1
, (19)

where ˆ

⌃

Y X
f is the frequency-domain cross-covariance between the

microphone observations Yf,t and reference sources Xf,t, and ˆ

⌃

XX
f

is the covariance between the reference sources Xf,t.
For each file, 10 iterations of variational updates, as described in

Section 2, are run. The output of these iterations is fed to a network
of K = 5 simplified update layers, as described in Section 3.1. The
parameters ⇥(k)

=

n

A

(k)
, b

(k)
, �

j,z,(k)
f

o

are untied between layers
and discriminatively trained. We use an “error-to-source” (ESR) cost
function given by
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where ˆ

X

(K)
f,t are the estimated source STFT coefficients from the last

(Kth) layer and Xf,t are the clean single-channel references. By
minimizing (20), the signal-to-noise ratio of both sources is maxi-
mized. Since many of the updates contain non-holomorphic func-
tions of the complex variables, we use Wirtinger calculus to derive
generalized gradients. Refer to the supplementary materials [25] for
a detailed description of the gradients and their derivation. To ensure
the GMM source precisions �

j,z,(k)
f remain nonnegative, we opti-

mize �

j,z,(k)
f := log �

j,z,(k)
f , and replace all instances of �

j,z,(k)
f

in the updates with exp�

j,z,(k)
f . Stochastic gradient descent is used

for backpropagation, and a gradient step is made using one mixture

file at a time. The initial learning rate is set to ⌘ = 0.02, and an
annealing schedule is used such that the learning rate for the nth file
is

⌘

(n)
=

⌘

(0)

1 + dn

(21)

where d is a constant that determines the rate of decay. For our
experiments, we set d = 1/(20 · 780). We use a momentum of 0.9.
A validation set is built from 65 randomly selected files from the
SimData development set, and its error is measured after every 78
gradient steps.

Matlab was used to implement the MCGMM variational infer-
ence algorithm, the forward pass of the deep MCGMM, and gradi-
ent computations for discriminative training. All computations are
performed on an Nvidia Titan X GPU using the Matlab Parallel Pro-
cessing Toolbox. Using this implementation, for a 10 second audio
file it takes about 5 seconds to perform the MCGMM variational al-
gorithm and about 10 seconds to perform a deep MCGMM forward
pass and backpropagation gradient computation.

Table 1 shows the resulting SNRs of the sources, averaged across
the validation set, for different numbers of discriminatively-trained
deep MCGMM layers and amounts of training data, where SNR for
time-domain estimate x̂ with reference x is defined as

SNR(x̂, x) = 10 log10

P

n x

2
n

P

n(x̂n � xn)
2
. (22)

Table 1. Source separation results for the deep MCGMM.
DMCGMM Trained Training SNR (dB)

layers layers size Src. 1 Src. 2 Avg.

No proc. — — -0.40 -1.16 -0.78
5 0 780 files 3.35 2.84 3.10
5 3 780 files 3.55 3.03 3.29
5 3 2964 files 3.57 3.00 3.29
5 4 780 files 3.61 3.06 3.34
5 5 780 files 3.69 3.16 3.43

We can see that separation performance improves as the num-
ber of discriminatively-trained layers increases. The performance
of the 3-layer network seems unaffected by the size of the training
data, which suggests that the network is at capacity in terms of its
representational power.

5. CONCLUSION AND FUTURE WORK

In this paper, we have unfolded an existing model-based variational
inference algorithm for separating multimicrophone mixtures into
a novel computational network. The resulting network was aug-
mented with deep sigmoid network-like components that estimate
source states to create the deep MCGMM. The deep MCGMM di-
rectly processes complex-valued frequency-domain inputs, and by
discriminatively training source model parameters achieves superior
performance over the model-based variational inference algorithm.

In the future, we will explore other enhancements and general-
izations of this network, including incorporation of recurrence and
LSTMs, more sophisticated versions and extensions of the model,
other types of cost functions such as cross-entropy on the source
states, and combination with automatic speech recognition systems.
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Fig. 1. Last two layers of the unfolded deep MCGMM. Boxes with double lines are the discriminatively-trained source parameters, and
shaded boxes represent the observed data.

Algorithm 1: Simplified variational EM algorithm for the MCGMM,
where h(·)tit :=

1
T

PT
t=1(·)t.

Data: Multichannel mixture STFT Y1:F,1:T , sensor precision  f ,
source parameters �1:J,1:Z1:F , ⇡1:J,1:Z , initial channel estimate B

(0)
1:F

Result: Estimated source STFTs ˆX
1:J,(K)
1:F,1:T and layer-wise

intermediate variables
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end

each multinomial state z

j
t be mapped to Z binary random variables

s

j,z
t in a fully-connected MRF, where sj,1:Zt is constrained to be one-

hot. We use the variational approximation q(s

j,1:Z
t ) =

Q
z ⇡̄

j,z
t

for the binary random variables s

j,z
t , with variational probabilities

⇡̄

j,z
t := q(s

j,z
t = 1, s

j,z0

t = 0, 8z0 6= z). Rather than perform-
ing unconstrained mean-field updates, here for continuity with our
GMM model, we constrain the variational posterior to behave like
multinomial mixture states. As such ⇡̄

j,z
f is the variational probabil-

ity that the zth element of sj,1:Zt is set to 1, and the other elements
are set to 0. Then, if we unfold mean field inference for the hidden
binary states s

j,z
t , we replace the multinomial prior log ⇡j,z in the

update (9) with

L

j,z,(k)
prior,t = A

(k)
⇡̄

j,z,(k�1)
t + c

(k)
, (15)

where the parameters A

(k) 2 RZ⇥Z and c

(k) 2 RZ can be layer-
dependent. When A

(k)
= 0 and c

(k)
= log ⇡

j,z for all k, the
new update (16) simplifies to the original variational update (9).
Although the synchronous mean-field updates break the variational
bound, we expect discriminative training to compensate such ap-
proximations.

The new update for Lj,z,(k)
t that replaces (9) is thus

L

j,z,(k)
t =L

j,z,(k)
prior,t + ↵L

j,z,(k)
acoustic,t, (16)

with
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Equation (17) is the part of the log-likelihood corresponding to
acoustic information and ↵ is an “acoustic weight” that expresses
the importance of the acoustic evidence over the prior. We refer to
the resulting network as a deep MCGMM (DMCGMM).

4. EXPERIMENTS AND DISCUSSION
We use a modified version1 of the SimData and multicondition train-
ing (mcTrain) data components of the REVERB challenge dataset
[24]. Each file consists of a single-channel speech utterance from
the WSJCAM0 dataset [25] reverberated using measured 8-channel
reverberation impulse responses (RIRs) in different rooms. SimData
uses RIRs from three different rooms, and mcTrain uses RIRs from
6 different rooms. Stationary noise that was recorded in each partic-
ular room is added at 20 dB SNR. To create a dataset of overlapping
speech, a second speech signal is reverberated using a RIR from a
different position in the same room and added to the original file.
No normalization of the power of the reverberated speech sources is
performed, in order to simulate realistic conditions. The power ratio
between the spatial images of speaker 1 and speaker 2 ranges from
about �15 dB to +15 dB. All mixes are between 6 and 10 seconds
long. The training set contains 15763 mixes, the development set
contains 965 mixes, and the evaluation set contains 1435 mixes.

The initial source precisions �

j,z,(0)
f were trained on a gender-

specific split of the WSJCAM0 training set. That is, two separate
256-component GMMs were trained for male and female speakers.
Each GMM was first trained on the log-magnitude STFTs. Then, us-
ing the frame labels ` from the result, the GMM precisions �z

f were
set to be 1/

P
t:`(t)=z |Xf,t|2. Then these gender-specific GMMs

1Thanks to Michael Mandel for building this dataset during JSALT 2015.
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Equation (18) is the part of the log-likelihood corresponding to
acoustic information and ↵ is an “acoustic weight” that expresses
the importance of the acoustic evidence over the prior.

4. EXPERIMENTS AND DISCUSSION

We use a modified version of the SimData and multicondition train-
ing (mcTrain) data components of the REVERB challenge dataset
[23]. Each file consists of a single-channel speech utterance from
the WSJCAM0 dataset [24] reverberated using measured reverbera-
tion impulse responses (RIR) in different rooms. SimData uses RIRs
from three different rooms, and mcTrain uses RIRs from 6 different
rooms. Stationary noise that was recorded in each particular room
is added at 20 dB SNR. To create a dataset of overlapping speech,
we add a second speech signal to each file that has been reverber-
ated using a measured RIR that corresponds to a different position in
the same room. No normalization of the power of the reverberated
speech sources is performed, in order to test realistic conditions. The
power ratio between speaker 1 and speaker 2 ranges from about �10

dB to +10 dB.
The initial source precisions �

j,z,(0)
f were trained on a gender-

specific split of the WSJCAM0 training set. That is, two separate
256-component GMMs were trained for male and female speakers.
Then these gender-specific GMMs were concatenated into a 512-
component GMM. A GMM was first trained on the log-magnitude
STFTs. Then, using the labels ` from the result, the GMM preci-
sions �z

f were set to be 1/

P

t:`(t)=z |Xf,t|2. The MRF parameters
are initialized as A

(0)
= 0 and b

(0)
= log ⇡

z . Both sources are
initialized with the same source model.

Since our main interest here is to observe the performance im-
provement of the deep MCGMM over the conventional MCGMM,
we used an oracle least-squares initialization for the channel model
for each file:
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, (19)

where ˆ

⌃

Y X
f is the frequency-domain cross-covariance between the

microphone observations Yf,t and reference sources Xf,t, and ˆ

⌃

XX
f

is the covariance between the reference sources Xf,t.
For each file, 10 iterations of variational updates, as described in

Section 2, are run. The output of these iterations is fed to a network
of K = 5 simplified update layers, as described in Section 3.1. The
parameters ⇥(k)

=

n
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o

are untied between layers
and discriminatively trained. We use an “error-to-source” (ESR) cost
function given by
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where ˆ

X

(K)
f,t are the estimated source STFT coefficients from the last

(Kth) layer and Xf,t are the clean single-channel references. By
minimizing (20), the signal-to-noise ratio of both sources is maxi-
mized. Since many of the updates contain non-holomorphic func-
tions of the complex variables, we use Wirtinger calculus to derive
generalized gradients. Refer to the supplementary materials [25] for
a detailed description of the gradients and their derivation. To ensure
the GMM source precisions �

j,z,(k)
f remain nonnegative, we opti-

mize �

j,z,(k)
f := log �

j,z,(k)
f , and replace all instances of �

j,z,(k)
f

in the updates with exp�

j,z,(k)
f . Stochastic gradient descent is used

for backpropagation, and a gradient step is made using one mixture

file at a time. The initial learning rate is set to ⌘ = 0.02, and an
annealing schedule is used such that the learning rate for the nth file
is

⌘

(n)
=

⌘

(0)

1 + dn

(21)

where d is a constant that determines the rate of decay. For our
experiments, we set d = 1/(20 · 780). We use a momentum of 0.9.
A validation set is built from 65 randomly selected files from the
SimData development set, and its error is measured after every 78
gradient steps.

Matlab was used to implement the MCGMM variational infer-
ence algorithm, the forward pass of the deep MCGMM, and gradi-
ent computations for discriminative training. All computations are
performed on an Nvidia Titan X GPU using the Matlab Parallel Pro-
cessing Toolbox. Using this implementation, for a 10 second audio
file it takes about 5 seconds to perform the MCGMM variational al-
gorithm and about 10 seconds to perform a deep MCGMM forward
pass and backpropagation gradient computation.

Table 1 shows the resulting SNRs of the sources, averaged across
the validation set, for different numbers of discriminatively-trained
deep MCGMM layers and amounts of training data, where SNR for
time-domain estimate x̂ with reference x is defined as

SNR(x̂, x) = 10 log10

P

n x

2
n

P

n(x̂n � xn)
2
. (22)

Table 1. Source separation results for the deep MCGMM.
DMCGMM Trained Training SNR (dB)

layers layers size Src. 1 Src. 2 Avg.

No proc. — — -0.40 -1.16 -0.78
5 0 780 files 3.35 2.84 3.10
5 3 780 files 3.55 3.03 3.29
5 3 2964 files 3.57 3.00 3.29
5 4 780 files 3.61 3.06 3.34
5 5 780 files 3.69 3.16 3.43

We can see that separation performance improves as the num-
ber of discriminatively-trained layers increases. The performance
of the 3-layer network seems unaffected by the size of the training
data, which suggests that the network is at capacity in terms of its
representational power.

5. CONCLUSION AND FUTURE WORK

In this paper, we have unfolded an existing model-based variational
inference algorithm for separating multimicrophone mixtures into
a novel computational network. The resulting network was aug-
mented with deep sigmoid network-like components that estimate
source states to create the deep MCGMM. The deep MCGMM di-
rectly processes complex-valued frequency-domain inputs, and by
discriminatively training source model parameters achieves superior
performance over the model-based variational inference algorithm.

In the future, we will explore other enhancements and general-
izations of this network, including incorporation of recurrence and
LSTMs, more sophisticated versions and extensions of the model,
other types of cost functions such as cross-entropy on the source
states, and combination with automatic speech recognition systems.
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Fig. 1. Last two layers of the unfolded deep MCGMM. Boxes with double lines are the discriminatively-trained source parameters, and
shaded boxes represent the observed data.

Algorithm 1: Simplified variational EM algorithm for the MCGMM,
where h(·)tit :=

1
T

PT
t=1(·)t.

Data: Multichannel mixture STFT Y1:F,1:T , sensor precision  f ,
source parameters �1:J,1:Z1:F , ⇡1:J,1:Z , initial channel estimate B

(0)
1:F

Result: Estimated source STFTs ˆX
1:J,(K)
1:F,1:T and layer-wise

intermediate variables
for k = 1 : K do
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end

each multinomial state z

j
t be mapped to Z binary random variables

s

j,z
t in a fully-connected MRF, where sj,1:Zt is constrained to be one-

hot. We use the variational approximation q(s

j,1:Z
t ) =

Q
z ⇡̄

j,z
t

for the binary random variables s

j,z
t , with variational probabilities

⇡̄

j,z
t := q(s

j,z
t = 1, s

j,z0

t = 0, 8z0 6= z). Rather than perform-
ing unconstrained mean-field updates, here for continuity with our
GMM model, we constrain the variational posterior to behave like
multinomial mixture states. As such ⇡̄

j,z
f is the variational probabil-

ity that the zth element of sj,1:Zt is set to 1, and the other elements
are set to 0. Then, if we unfold mean field inference for the hidden
binary states s

j,z
t , we replace the multinomial prior log ⇡j,z in the

update (9) with

L

j,z,(k)
prior,t = A

(k)
⇡̄

j,z,(k�1)
t + c

(k)
, (15)

where the parameters A

(k) 2 RZ⇥Z and c

(k) 2 RZ can be layer-
dependent. When A

(k)
= 0 and c

(k)
= log ⇡

j,z for all k, the
new update (16) simplifies to the original variational update (9).
Although the synchronous mean-field updates break the variational
bound, we expect discriminative training to compensate such ap-
proximations.

The new update for Lj,z,(k)
t that replaces (9) is thus

L

j,z,(k)
t =L

j,z,(k)
prior,t + ↵L

j,z,(k)
acoustic,t, (16)

with

L

j,z,(k)
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j,z,(k)
f

+

X

f
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j,z,(k)
f

���µ̄j,z,(k)
f

���
2
. (17)

Equation (17) is the part of the log-likelihood corresponding to
acoustic information and ↵ is an “acoustic weight” that expresses
the importance of the acoustic evidence over the prior. We refer to
the resulting network as a deep MCGMM (DMCGMM).

4. EXPERIMENTS AND DISCUSSION
We use a modified version1 of the SimData and multicondition train-
ing (mcTrain) data components of the REVERB challenge dataset
[24]. Each file consists of a single-channel speech utterance from
the WSJCAM0 dataset [25] reverberated using measured 8-channel
reverberation impulse responses (RIRs) in different rooms. SimData
uses RIRs from three different rooms, and mcTrain uses RIRs from
6 different rooms. Stationary noise that was recorded in each partic-
ular room is added at 20 dB SNR. To create a dataset of overlapping
speech, a second speech signal is reverberated using a RIR from a
different position in the same room and added to the original file.
No normalization of the power of the reverberated speech sources is
performed, in order to simulate realistic conditions. The power ratio
between the spatial images of speaker 1 and speaker 2 ranges from
about �15 dB to +15 dB. All mixes are between 6 and 10 seconds
long. The training set contains 15763 mixes, the development set
contains 965 mixes, and the evaluation set contains 1435 mixes.

The initial source precisions �

j,z,(0)
f were trained on a gender-

specific split of the WSJCAM0 training set. That is, two separate
256-component GMMs were trained for male and female speakers.
Each GMM was first trained on the log-magnitude STFTs. Then, us-
ing the frame labels ` from the result, the GMM precisions �z

f were
set to be 1/

P
t:`(t)=z |Xf,t|2. Then these gender-specific GMMs

1Thanks to Michael Mandel for building this dataset during JSALT 2015.

One layer of unfolded network
⇡̄j,z,(k�1)
t

Equation (18) is the part of the log-likelihood corresponding to
acoustic information and ↵ is an “acoustic weight” that expresses
the importance of the acoustic evidence over the prior.

4. EXPERIMENTS AND DISCUSSION

We use a modified version of the SimData and multicondition train-
ing (mcTrain) data components of the REVERB challenge dataset
[23]. Each file consists of a single-channel speech utterance from
the WSJCAM0 dataset [24] reverberated using measured reverbera-
tion impulse responses (RIR) in different rooms. SimData uses RIRs
from three different rooms, and mcTrain uses RIRs from 6 different
rooms. Stationary noise that was recorded in each particular room
is added at 20 dB SNR. To create a dataset of overlapping speech,
we add a second speech signal to each file that has been reverber-
ated using a measured RIR that corresponds to a different position in
the same room. No normalization of the power of the reverberated
speech sources is performed, in order to test realistic conditions. The
power ratio between speaker 1 and speaker 2 ranges from about �10

dB to +10 dB.
The initial source precisions �

j,z,(0)
f were trained on a gender-

specific split of the WSJCAM0 training set. That is, two separate
256-component GMMs were trained for male and female speakers.
Then these gender-specific GMMs were concatenated into a 512-
component GMM. A GMM was first trained on the log-magnitude
STFTs. Then, using the labels ` from the result, the GMM preci-
sions �z

f were set to be 1/

P

t:`(t)=z |Xf,t|2. The MRF parameters
are initialized as A

(0)
= 0 and b

(0)
= log ⇡

z . Both sources are
initialized with the same source model.

Since our main interest here is to observe the performance im-
provement of the deep MCGMM over the conventional MCGMM,
we used an oracle least-squares initialization for the channel model
for each file:

B
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Y X
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⌃

XX
f

⌘�1
, (19)

where ˆ

⌃

Y X
f is the frequency-domain cross-covariance between the

microphone observations Yf,t and reference sources Xf,t, and ˆ

⌃

XX
f

is the covariance between the reference sources Xf,t.
For each file, 10 iterations of variational updates, as described in

Section 2, are run. The output of these iterations is fed to a network
of K = 5 simplified update layers, as described in Section 3.1. The
parameters ⇥(k)

=

n
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(k)
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(k)
, �
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f

o

are untied between layers
and discriminatively trained. We use an “error-to-source” (ESR) cost
function given by
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where ˆ

X

(K)
f,t are the estimated source STFT coefficients from the last

(Kth) layer and Xf,t are the clean single-channel references. By
minimizing (20), the signal-to-noise ratio of both sources is maxi-
mized. Since many of the updates contain non-holomorphic func-
tions of the complex variables, we use Wirtinger calculus to derive
generalized gradients. Refer to the supplementary materials [25] for
a detailed description of the gradients and their derivation. To ensure
the GMM source precisions �

j,z,(k)
f remain nonnegative, we opti-

mize �

j,z,(k)
f := log �

j,z,(k)
f , and replace all instances of �

j,z,(k)
f

in the updates with exp�

j,z,(k)
f . Stochastic gradient descent is used

for backpropagation, and a gradient step is made using one mixture

file at a time. The initial learning rate is set to ⌘ = 0.02, and an
annealing schedule is used such that the learning rate for the nth file
is

⌘

(n)
=

⌘

(0)

1 + dn

(21)

where d is a constant that determines the rate of decay. For our
experiments, we set d = 1/(20 · 780). We use a momentum of 0.9.
A validation set is built from 65 randomly selected files from the
SimData development set, and its error is measured after every 78
gradient steps.

Matlab was used to implement the MCGMM variational infer-
ence algorithm, the forward pass of the deep MCGMM, and gradi-
ent computations for discriminative training. All computations are
performed on an Nvidia Titan X GPU using the Matlab Parallel Pro-
cessing Toolbox. Using this implementation, for a 10 second audio
file it takes about 5 seconds to perform the MCGMM variational al-
gorithm and about 10 seconds to perform a deep MCGMM forward
pass and backpropagation gradient computation.

Table 1 shows the resulting SNRs of the sources, averaged across
the validation set, for different numbers of discriminatively-trained
deep MCGMM layers and amounts of training data, where SNR for
time-domain estimate x̂ with reference x is defined as

SNR(x̂, x) = 10 log10

P

n x

2
n

P

n(x̂n � xn)
2
. (22)

Table 1. Source separation results for the deep MCGMM.
DMCGMM Trained Training SNR (dB)

layers layers size Src. 1 Src. 2 Avg.

No proc. — — -0.40 -1.16 -0.78
5 0 780 files 3.35 2.84 3.10
5 3 780 files 3.55 3.03 3.29
5 3 2964 files 3.57 3.00 3.29
5 4 780 files 3.61 3.06 3.34
5 5 780 files 3.69 3.16 3.43

We can see that separation performance improves as the num-
ber of discriminatively-trained layers increases. The performance
of the 3-layer network seems unaffected by the size of the training
data, which suggests that the network is at capacity in terms of its
representational power.

5. CONCLUSION AND FUTURE WORK

In this paper, we have unfolded an existing model-based variational
inference algorithm for separating multimicrophone mixtures into
a novel computational network. The resulting network was aug-
mented with deep sigmoid network-like components that estimate
source states to create the deep MCGMM. The deep MCGMM di-
rectly processes complex-valued frequency-domain inputs, and by
discriminatively training source model parameters achieves superior
performance over the model-based variational inference algorithm.

In the future, we will explore other enhancements and general-
izations of this network, including incorporation of recurrence and
LSTMs, more sophisticated versions and extensions of the model,
other types of cost functions such as cross-entropy on the source
states, and combination with automatic speech recognition systems.
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1. Deep unfolding overview 

2. Generative model: multichannel GMM 

3. Unfolding the multichannel GMM 

4. Results
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4. Results for multichannel source separation
Dataset: overlapping* REVERB challenge [1]

*Thanks to Michael Mandel for generating this dataset during JSALT 2015 in Seattle

…

• 20dB SNR stationary background noise. 
• T60 times up to 700ms (realistic and hard!) 
• Source 1 to source 2 power ratio between -15dB and +15dB. 
• Training set: 15763 files of 6-10 seconds each, 6 different rooms. 
• Validation set: 65 files of 6-10 seconds each, 3 different rooms. 
• Evaluation set: 1435 files of 6-10 seconds each, 3 different rooms.

[1] Kinoshita et al. 2013

8ch array scenario
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• Everything implemented in Matlab using Bespoke 
Network Toolbox (BeNToBox) [1] 

• Speaker- and gender-independent GMM source model 
trained with maximum-likelihood on WSJCAM0 [2] 

• “Warm up” with 10 untrained generative model layers 

• Discriminative training: incremental layer-wise training 
on single GPU with stochastic gradient descent with 
momentum

20

4. Results for multichannel source separation
Implementation

[2] Robinson et al. 1995
[1] github.com/stwisdom/bentobox
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4. Results for multichannel source separation

• Baseline: 10 or 15 MCGMM variational inference iterations 
• Proposed:10 MCGMM iterations + K trained unfolded layers,  

(for K=1,2,3, or 4)

Source-to-distortion ratio of source spatial images (SDR) [1]

[1] bss_eval_images by Vincent et al.
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No proc. -0.06
10+0 5.88
15+0 5.94
10+1 6.02
10+2 6.23
10+3 6.32
10+4 6.37
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Results: 

• We used a new technique, deep unfolding, to convert variational 
inference for a generative model, the multichannel GMM (MCGMM) [1], 
into a deep network 

• The resulting network has meaningful and interpretable activation 
functions and directly processes complex-valued multichannel 
frequency domain 

• Improvements to the generative model manifest in the unfolded network 

• Discriminative training improves performance over the original 
generative model 

Future work: 

• Integrate with ASR systems 

• Recurrent and convolutional layers 

• Unfold other generative models

22

Conclusion

[1] Attias 2003
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Thank you! 
Questions?

23

http://www.merl.com/demos/deep-MCGMM	

Code and supplementary materials:


