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Introduction

Motivation
® Deep neural networks work well for a wide variety of tasks
e Computer vision, speech recognition, speech enhancement

e But not many for microphone arrays (only [1]-[4]). How to
incorporate domain knowledge”

® How can we use deep neural networks for multichannel source
separation?

[1] Nugraha et al. 2015
[2] Hoshen et al. 2015
[3] Sainath et al. 2015, 2016
2 /22 [4] Xiao et al. 2016



Introduction

Generative
Deep neural
model

iNnference

network

Approach:

e \We use a new method called “deep-unfolding” to create deep neural
networks from generative models

e Recently used for NMF [1] and LDA topic modeling [2]

e \\le can improve the generative model, which tells us how to change
the architecture of the neural network

[1] Le Roux et al. 2015

3 /00 [2] Chen et al. 2015



Introduction

Results:

e A meaningful and interpretable deep network that can separate
sources in complex-valued multichannel frequency-domain.

e Discriminative training improves performance of the original
inference algorithm.
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1. Deep unfolding overview
2. Generative model: multichannel GMM
3. Unfolding the multichannel GMM

4. Results
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1. Deep unfolding overview
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* Deep unfolding enables creation of principled and
novel deep architectures from generative models.
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1. Deep unfolding overview
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* Deep unfolding enables creation of principled and
novel deep architectures from generative models.

[1] Hershey, Le Roux, Weninger 2014
7 |22 [2] Le Roux, Hershey, Weninger 2015



1. Deep unfolding overview

(1) Graphical model (1) Define model
(2) Derive iterative inference algorithm
5B o |
.\ (3) Unfold iterations into layers in a network
i+

(4) Discriminatively train parameters 6, tying or
untying between layers.

(2) (3) Unfolded network (4) Trained unfolded networks
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g /2o [1] Hershey, Le Roux, Weninger 2014



1. Deep unfolding overview
2. Generative model: multichannel GMM
3. Unfolding the multichannel GMM

4. Results
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2. Generative model: multichannel GMM
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e Multichannel GMM (MCGMM): probabilistic model
of complex-valued multichannel STFT [1]

e GMM source models

e Narrowband channel model

10/22 [1] Attias 2003



2. Generative model: multichannel GMM
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For k=1:K, estimate:

Source GMM state probabilities

Source means (complex STFTs)

Channel model

11/22

lterative variational
inference algorithm

[1]:

[1] Attias 2003



2. Generative model: multichannel GMM

Iterative variational
inference algorithm

[1]:

Algorithm 1: Simplified variational EM algorithm for the MCGMM,
T
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1. Deep unfolding overview
2. Generative model: multichannel GMM
3. Unfolding the multichannel GMM

4. Results
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3. Unfolding the multichannel GMM

One layer of unfolded network
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Source
‘model

Iterative inference

For k=1:K, estimate:
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3. Unfolding the multichannel GMM

One layer of unfolded network

* The unfolded network is
perfectly interpretable!
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3. Unfolding the multichannel GMM
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* Improve the generative model:
Replace multinomial source states with
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3. Unfolding the multichannel GMM

One layer of unfolded network
Graphical model 7o) Mean-field inference in
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Iterative inference

For k=1:K, estimate:
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1. Deep unfolding overview
2. Generative model: multichannel GMM
3. Unfolding the multichannel GMM

4. Results
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4. Results for multichannel source separation

Dataset overlapping* REVERB challenge [1]

. 20dB SNR stahonary background noise.

 T60 times up to 700ms (realistic and hard!)

e Source 1to source 2 power ratio between -15dB and +15dB.

« Training set: 15763 files of 6-10 seconds each, 6 different rooms.
» Validation set: 65 files of 6-10 seconds each, 3 different rooms.

 Evaluation set: 1435 files of 6-10 seconds each, 3 different rooms.
*Thanks to Michael Mandel for generating this dataset during JSALT 2015 in Seattle

19/22 [1] Kinoshita et al. 2013



4. Results for multichannel source separation

Implementation

* Everything implemented in Matlab using Bespoke
Network Toolbox (BeNToBox) [1]

e Speaker- and gender-independent GMM source model
trained with maximume-likelihood on WSJCAMO (2]

 "Warm up” with 10 untrained generative model layers
* Discriminative training: incremental layer-wise training

on single GPU with stochastic gradient descent with
momentum

[1] github.com/stwisdom/bentobox
20/22  [2] Robinson et al. 1995



4. Results for multichannel source separation

Source-to-distortion ratio of source spatial images (SDR) [1]
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« Baseline: 10 or 15 MCGMM variational inference iterations
* Proposed:10 MCGMM iterations + K trained unfolded layers,

(for K=1,2,3, or 4)
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Conclusion

Results:

e \We used a new technique, deep unfolding, to convert variational
inference for a generative model, the multichannel GMM (MCGMM) [1],
into a deep network

e The resulting network has meaningful and interpretable activation
functions and directly processes complex-valued multichannel
frequency domain

® Improvements to the generative model manifest in the unfolded network

e Discriminative training improves performance over the original
generative model

Future work:

® |ntegrate with ASR systems

e Recurrent and convolutional layers
e Unfold other generative models

22/22 [1] Attias 2003



Thank you!
Questions?

Code and supplementary materials:
http://www.merl.com/demos/deep-MCGMM




