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Burrows-Wheeler Transform and 

Run-Length Encoding

 Given a word 𝑤, the Burrows-Wheeler Transform of 𝑤 (BWT 𝑤 ) is the 

concatenation of the last characters of the lexicographically sorted rotations

of 𝑤

 𝑟 𝑤 : number phrases of the run-length encoding applied to 𝑤

 𝜌 𝑤 =
𝑟𝐵𝑊𝑇 𝑤

𝑟 𝑤
: BWT-clustering ratio [Mantaci et al., Theoret. Comput. Sci. 2017]
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Morphisms and Purely Morphic Words

 Given two alphabets 𝐴 and 𝐵, a morphism is a map 𝜑: 𝐴∗ ↦ 𝐵∗ such that 

𝜑 𝑢𝑣 = 𝜑 𝑢 𝜑 𝑣 for all 𝑢, 𝑣 ∈ 𝐴∗.

𝜑: ቐ
𝑎 ↦ 𝑎𝑏
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𝜑 𝑎 =

𝜑2 𝑎 =

𝜑3 𝑎 =

𝜑4 𝑎 =

…

𝝋∞ 𝒂 : 𝑎𝑏𝑏𝑐𝑏𝑐𝑎𝑐𝑏𝑐𝑎𝑐𝑎𝑏𝑎𝑐𝑏𝑐𝑎𝑐𝑎𝑏𝑎𝑐𝑎𝑏𝑏𝑐𝑎𝑏𝑎𝑐…
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Purely morphic words:

Thue-Morse & Fibonacci
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…

𝜏: ቊ
𝑎 ↦ 𝑎𝑏
𝑏 ↦ 𝑏𝑎

T =

Thue-Morse word

𝜃: ቊ
𝑎 ↦ 𝑎𝑏
𝑏 ↦ 𝑎
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Fibonacci word

F =

𝑎

𝑎𝑏

𝑎𝑏𝑎

𝑎𝑏𝑎𝑎𝑏
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Morphisms &

Data Compression

 Some repetitiveness measures have been studied for families of words generated by morphisms

 LZ77 complexity 𝒛 [Constantinescu & Ilie, SIAM J. Discret. Math., 2007]

 Smallest string attractor 𝜸 [Schaeffer & Shallit, arXiv, 2020]

 𝑁𝑈-systems [Navarro & Urbina, SPIRE 2021] are based on morphisms

[Kempa & Prezza, STOC 2018]



𝑟BWT on purely morphic finite words

❑ Question 1

 Given a morphism 𝜑 such that 𝜑∞(𝑎) is a purely morphic word, can we bound 𝑟𝐵𝑊𝑇 𝜑𝑖 𝑎 ?

❑ Question 2

 Can we evaluate the BWT-clustering ratio 𝜌(𝜑𝑖 𝑎 )?

𝐵𝑊𝑇(𝜑𝑖(𝑎))

𝐵𝑊𝑇(𝜑𝑖+1(𝑎))

𝐵𝑊𝑇(𝜑𝑖+2(𝑎))



So far: rBWT on

finite Thue-Morse & Fibonacci words

❑ [Brlek et al., IWOCA 2019]

 𝑟𝐵𝑊𝑇 𝑇𝑖 = 2𝑖 for any 𝑖 > 0

❑ [Mantaci et al., Inf. Process. Lett. 2003]

 𝑟𝐵𝑊𝑇 𝐹𝑖 = 2 for any 𝑖 > 0

𝑇𝑖 = 𝜏𝑖(𝑎) 𝐹𝑖 = 𝜃𝑖(𝑎)

𝜏: ቊ
𝑎 ↦ 𝑎𝑏
𝑏 ↦ 𝑏𝑎

𝜃: ቊ
𝑎 ↦ 𝑎𝑏
𝑏 ↦ 𝑎
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Factor complexity of 

purely morphic words

❑ Periodic fixed-points

❑ Aperiodic fixed-points classification [Pansiot, ICALP 1984]

 Let x=φ∞(a) be an aperiodic purely morphic word. 

Then, only one of the following is true:

 𝑓𝑥 𝑛 = Θ(𝑛)

 𝑓𝑥 𝑛 = Θ 𝑛 log 𝑛

 𝑓𝑥 𝑛 = Θ 𝑛 log log 𝑛

 𝑓𝑥 𝑛 = Θ(𝑛2)

𝑥 = 𝜑∞ 𝑎 =
𝑣𝜔 = 𝑣𝑣𝑣𝑣𝑣…𝑣𝑣𝑣…

𝑢𝑣𝜔 = 𝑢𝑣𝑣𝑣𝑣…𝑣𝑣𝑣…
𝑟BWT 𝜑𝑖 𝑎 ∈ Θ(1)

Thue-Morse

Fibonacci 𝑟BWT 𝜑𝑖 𝑎 ∈ ?

 𝑓𝑥 𝑛 = Θ(1)

 𝑥: infinite or finite word

 factor complexity 𝑓𝑥(𝑛): 
number of distinct factors of 

length 𝑛 that occur in 𝑥.



Upper bounds for 𝑟BWT

❑ Proposition

 Let 𝑥 = 𝜑∞(𝑎) be an infinite aperiodic word. Then the following upper bounds 

for 𝑟BWT 𝜑𝑖 𝑎 hold:

 if 𝑓𝑥 𝑛 ∈ Θ(𝑛) then 𝑟BWT 𝜑𝑖 𝑎 ∈ 𝑂(𝑖);

 if 𝑓𝑥 𝑛 ∈ Θ 𝑛 log log 𝑛 then 𝑟BWT 𝜑𝑖 𝑎 ∈ 𝑂 𝑖 log 𝑖 log log 𝑖 ;

 if 𝑓𝑥 𝑛 ∈ Θ(𝑛 log 𝑛) then 𝑟BWT 𝜑𝑖 𝑎 ∈ 𝑂 𝑖2 log 𝑖 .

 In the proof a relationship between 𝑟BWT and the measure 𝛿 (related to the 
factor complexity) is also used

 Such a result does not provide a significative upper-bound when 𝑓𝑥 𝑛 = Θ(𝑛2)

[Raskhodnikova et al., Algorithmica 2013][Kempa & Kociumaka, FOCS 2020]



𝑓𝑥 𝑛 = Θ(𝑛2): binary alphabet A= 𝑎, 𝑏

𝜑: ቊ𝑎 ↦ 𝑎𝑢𝑎𝑏𝑘

𝑏 ↦ 𝑏
with

𝑘 > 0
𝑢 ∈ 𝐴∗

⇔ 𝑓𝜑∞ 𝑎 𝑛 = Θ(𝑛2)

 There exists 𝑖0 such that at each step 𝑖 ≥ 𝑖0, we add a constant number of runs

 𝑟BWT 𝜑𝑖 𝑎 ∈ 𝑂(𝑖), for any 𝑖 > 0

𝐵𝑊𝑇(𝜑𝑖(𝑎))
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Binary morphisms

 Summing up, for binary morphisms we have the following bounds for 𝑟𝐵𝑊𝑇 on 

binary purely morphic finite words

 On the other hand, we proved that

𝑟 𝜑𝑖 𝑎 ∈

𝑥 = 𝜑∞(𝑎)

𝒇𝒙(𝒏)

Θ(1)

Θ(𝑛)

Θ 𝑛 log log𝑛

Θ 𝑛 log𝑛

Θ(𝑛2)

Θ 1 if 𝜑: ቊ𝑎 ↦ 𝑎𝑏𝑘

𝑏 ↦ 𝑏ℓ
, with 𝑘, ℓ ≥ 1

Ω 2𝑖 otherwise

𝒓𝑩𝑾𝑻 𝝋𝒊 𝒂

Θ(1)

O(𝑖)

O 𝑖 log 𝑖 log log 𝑖

O 𝑖2 log 𝑖

O(𝑖)

Exists 𝑖0 such that, for all 𝑖 ≥ 𝑖0,

𝝆 𝝋𝒊 𝒂 =
𝒓𝑩𝑾𝑻 𝝋𝒊 𝒂

𝒓 𝝋𝒊 𝒂
≪ 𝟏

Purely morphic word 𝑥 = 𝑎𝑏𝑏𝑏𝑏𝑏…
for all 𝑘, ℓ ≥ 1

𝑖 ∈ Θ log |𝜑𝑖 𝑎 |

if 𝜑 ≠ ቊ𝑎 ↦ 𝑎𝑏𝑘

𝑏 ↦ 𝑏



Further works and open problems

 Results on binary morphisms have been improved in 

[Frosini, Mancini, Rinaldi, R. and Sciortino, Logarithmic equal-letter runs for BWT 

of purely morphic words, Developments in Language Theory  (DLT-2022)]

 𝑟𝐵𝑊𝑇 𝜑𝑖 𝑎 ∈ 𝑂(𝑖) for any binary prolongable morphism

 If 𝑓𝑥 𝑛 is Θ 𝑛 log log 𝑛 or Θ 𝑛 log 𝑛 or Θ(𝑛2), then 𝑟𝐵𝑊𝑇 𝜑𝑖 𝑎 ∈ Θ(𝑖)

 Open problems

 Can we extend the bounds on rBWT for all prefixes of the fixed point?

 Can we extend the tighter upper-bounds for larger alphabet?



Thanks for your

attention


