¹University of Florence, IT

²University of Siena, IT

³University of Palermo, IT

Burrows-Wheeler Transform on Purely Morphic Words

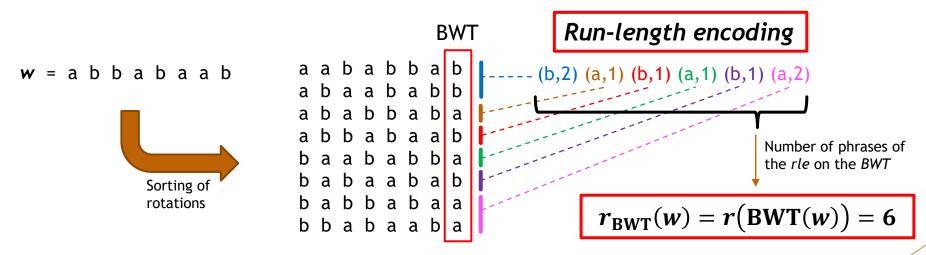
Andrea Frosini¹, Ilaria Mancini², Simone Rinaldi², Giuseppe Romana³, and Marinella Sciortino³

Data Compression Conference 2022

Snowbird, Utah, March 24

Burrows-Wheeler Transform and Run-Length Encoding

Given a word w, the Burrows-Wheeler Transform of w (BWT(w)) is the concatenation of the last characters of the lexicographically sorted rotations of w

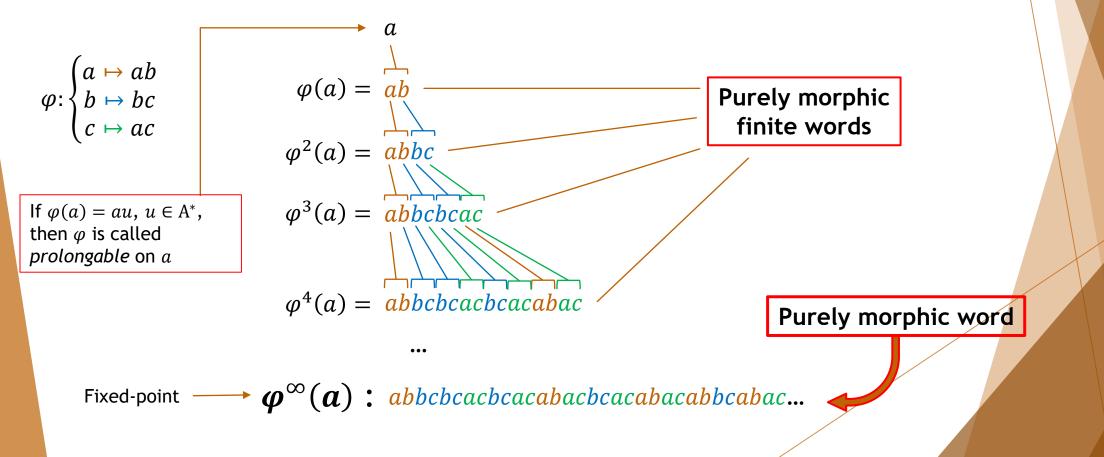


 \triangleright r(w): number phrases of the run-length encoding applied to w

• $\rho(w) = \frac{r_{BWT}(w)}{r(w)}$: BWT-clustering ratio [Mantaci et al., Theoret. Comput. Sci. 2017]

Morphisms and Purely Morphic Words

• Given two alphabets A and B, a *morphism* is a map $\varphi: A^* \mapsto B^*$ such that $\varphi(uv) = \varphi(u)\varphi(v)$ for all $u, v \in A^*$.



Purely morphic words: Thue-Morse & Fibonacci

$$\tau: \begin{cases} a \mapsto ab \\ b \mapsto ba \end{cases}$$

a ab abba abbabaab

T = abbabaabbaabbabababbabaabbabaab ...

Thue-Morse word

$$\theta: \begin{cases} a \mapsto ab \\ b \mapsto a \end{cases}$$

a ab aba abaab

...

Fibonacci word

Morphisms & Data Compression

Some repetitiveness measures have been studied for families of words generated by morphisms

- LZ77 complexity z [Constantinescu & Ilie, SIAM J. Discret. Math., 2007]
- Smallest string attractor γ [Schaeffer & Shallit, arXiv, 2020]

[Kempa & Prezza, STOC 2018]

NU-systems [Navarro & Urbina, SPIRE 2021] are based on morphisms

$r_{\rm BWT}$ on purely morphic finite words

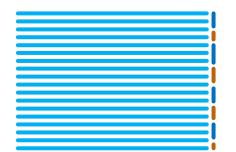
Question 1

• Given a morphism φ such that $\varphi^{\infty}(a)$ is a purely morphic word, can we bound $r_{BWT}(\varphi^{i}(a))$?

 $BWT(\varphi^i(a))$

 •	
•	

$BWT(\varphi^{i+1}(a))$	

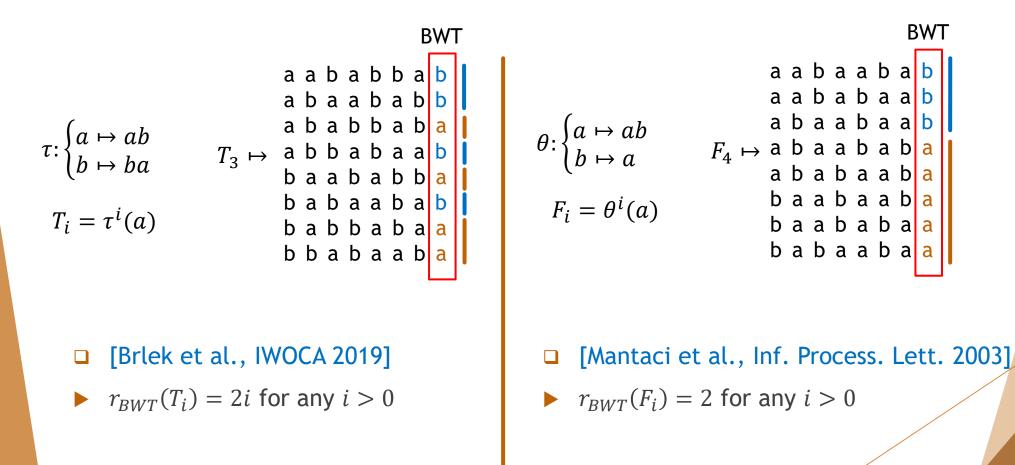


 $BWT(\varphi^{i+2}(a))$

Question 2

• Can we evaluate the BWT-clustering ratio $\rho(\varphi^i(a))$?

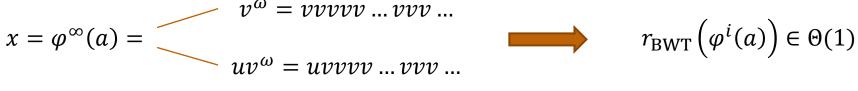
So far: r_{BWT} on finite Thue-Morse & Fibonacci words



Factor complexity of purely morphic words

Periodic fixed-points

- x: infinite or finite word
- factor complexity f_x(n): number of distinct factors of length n that occur in x.



 $\blacktriangleright f_x(n) = \Theta(1)$

- Aperiodic fixed-points classification [Pansiot, ICALP 1984]
- Let $x=\varphi^{\infty}(a)$ be an <u>aperiodic</u> purely morphic word. Then, only one of the following is true:

```
Thue-Morsef_x(n) = \Theta(n)f_x(n) = \Theta(n \log \log n)Fibonaccif_x(n) = \Theta(n \log n)f_x(n) = \Theta(n^2)
```

 $r_{\rm BWT}\left(\varphi^i(a)\right) \in ?$

Upper bounds for $r_{\rm BWT}$

- Proposition
- Let $x = \varphi^{\infty}(a)$ be an infinite aperiodic word. Then the following upper bounds for $r_{BWT}(\varphi^i(a))$ hold:
 - if $f_x(n) \in \Theta(n)$ then $r_{\text{BWT}}(\varphi^i(a)) \in O(i)$;
 - if $f_x(n) \in \Theta(n \log \log n)$ then $r_{BWT}(\varphi^i(a)) \in O(i \log i \log \log i)$;
 - if $f_x(n) \in \Theta(n \log n)$ then $r_{BWT}(\varphi^i(a)) \in O(i^2 \log i)$.

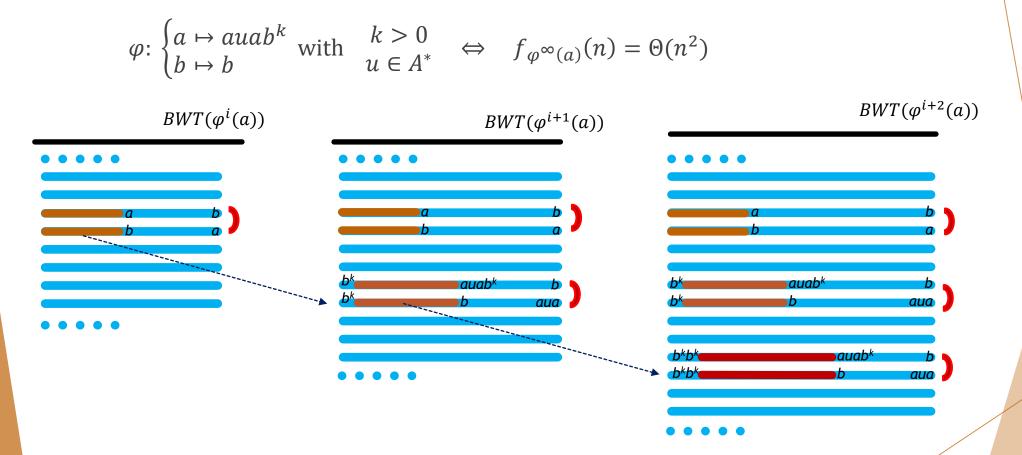
[Kempa & Kociumaka, FOCS 2020]

[Raskhodnikova et al., Algorithmica 2013]

In the proof a <u>relationship</u> between $r_{\rm BWT}$ and the measure δ (related to the factor complexity) is also used

Such a result does not provide a significative upper-bound when $f_x(n) = \Theta(n^2)$

$f_x(n) = \Theta(n^2)$: binary alphabet $A = \{a, b\}$



• There exists i_0 such that at each step $i \ge i_0$, we add a constant number of runs

►
$$r_{\text{BWT}}(\varphi^i(a)) \in O(i)$$
, for any $i > 0$

Binary morphisms

Summing up, for binary morphisms we have the following bounds for r_{BWT} on binary purely morphic finite words

	$f_x(n)$	$r_{BWT}\left(oldsymbol{arphi}^{i}(oldsymbol{a}) ight)$	
$x=\varphi^\infty(a)$	Θ(1)	Θ(1)	
	$\Theta(n)$	0(<i>i</i>)	$i \in \Theta(\log \varphi^i(a))$
	$\Theta(n \log \log n)$	$O(i \log i \log \log i)$	$i \in \Theta(\log \varphi^{i}(a))$ if $\varphi \neq \begin{cases} a \mapsto ab^{k} \\ b \mapsto b \end{cases}$
	$\Theta(n\log n)$	$O(i^2 \log i)$	$\prod \varphi \neq b \mapsto b$
	$\Theta(n^2)$	0(<i>i</i>)	

On the other hand, we proved that

Further works and open problems

- Results on binary morphisms have been improved in [Frosini, Mancini, Rinaldi, R. and Sciortino, Logarithmic equal-letter runs for BWT of purely morphic words, Developments in Language Theory (DLT-2022)]
 - ► $r_{BWT}(\varphi^i(a)) \in O(i)$ for any binary prolongable morphism
 - ▶ If $f_x(n)$ is $\Theta(n \log \log n)$ or $\Theta(n \log n)$ or $\Theta(n^2)$, then $r_{BWT}(\varphi^i(a)) \in \Theta(i)$

- Open problems
 - Can we extend the bounds on r_{BWT} for all prefixes of the fixed point?
 - Can we extend the tighter upper-bounds for larger alphabet?

Thanks for your attention