
Counting with Prediction: Rank and 
Select Queries with Adjusted Anchoring  

Oguzhan Kulekci 

Indiana University Bloomington


okulekci@iu.edu


Data Compression Conference 2022

mailto:okulekci@iu.edu


Rank & Select Queries

• The fundamental building block in compressed data structures. 


• Deeply studied for more than 30 years (please see the references in the paper)



 superblocks, each with  bits absolute rank value 


  blocks, each with  bits relative (to its superblock) rank value

n/(s . d) log n

n/d log(s ⋅ d)

Rank&Select Dictionaries

 - bits(s ⋅ d)  - bits(s ⋅ d)  - bits(s ⋅ d)  - bits(s ⋅ d)

 - bitsd  - bitsd  - bitsd

} n ⋅ [ log(s ⋅ d)
d

+
log n
s ⋅ d ] = o(n)

Total overhead

,which becomes  with 
proper selection of  and 

o(n)
s d

Maintain a dictionary of rank values for some positions and use it to answer queries efficiently. 



Rank&Select Dictionaries

 - bits(s ⋅ d)  - bits(s ⋅ d)  - bits(s ⋅ d)
 - bits(s ⋅ d)

 - bitsd  - bitsd  - bitsd
Rank(i):  

• Sum the corresponding superblock and block rank values    from the maintained dictionary

• Add the number of set bits detected inside the inner-block up to the queried position 


• SIMD instructions are used to compute this value fast in constant time. 

Overall, -time solution for rank with  overhead.

Select(i): 


• Yes, it needs a different data structure with variable size blocks to answer in constant time. 

O(1) o(n)

i



Rank&Select Dictionaries
• In practice, the data structures favor either rank or select operations, but not both ! Usually, the 

dictionaries constructed with fixed-size blocks favor rank, and variable-size ones select.


• If the bitmap is sparse (the polarity is far from 0.5) then keeping the bitmap compressed make 

sense, and leads to compressed R&S solutions. (Although they are a bit slow in practice still)

• New research direction by using machine learning techniques in data structure design, 
Learned data structures, Ferragina, Vinviguerra, 2020. 

• Boffa et al, ALENEX’21: A learned-approach to quicken and compress R&S Dictionaries 
• Targets compressed bitmap, favors SELECT with variable size blocks  

• This study 
• Targets uncompressed bitmaps, and favors RANK with fixed size blocks  



Previous Work: R&S with Learning Approach
• The positions of the set bits on a given bitmap is a 

sequence of increasing integers 



• Fit  lines, where each covers variable number of 
positions such that the error between the prediction 
and actual value is denotable by  bits. 


• Maintain the parameters for each  line, and 
also the  bit correction values for each position 


• Also some metadata for the number of positions 
covered per each line is stored


• The  depends on the regularity and number of 
the positions  

P = ⟨p1, p2, …, pz⟩
ℓ

c
ax + b

c

ℓ

1 2 Z

p1

p2

p3

p4

pz

3

• Select(i): Simply go the the line corresponding line, get the prediction and correct it.

• Rank(i): Search which line includes I and search the closest previous position on that line.

The error of 
the prediction



Proposed Data Structure

• The block rank values in each super-block is an 
increasing sequence


• ,   …… ,   



• Linear regression ( ) per each  and store the 
 values that occupies  bits.


• Per each block maintain a single validity bit and a  
bit correction value that consumes  bits.

B1 = ⟨b1
1 , b1

2 , …b1
s−1⟩

Bn/sd = ⟨bn/sd
1 , bn/d

2 , …bn/sd
s−1 ⟩

ax + b Bi

(a, b)
n

s ⋅ d
⋅ (32 + 32)

log m
n
d

⋅ (1 + log m)

 - bits(s ⋅ d)  - bits(s ⋅ d)  - bits(s ⋅ d)

 - bitsd  - bitsd

Total space usage in bits 

n
d

⋅ (log 2m +
64
s )

• Nothing is stored for the  
super-block rank sequence ! 

• They are almost encoded with 
the  parameters of the 
regression lines 

n/sd

b

ax + b,  when x = 0



Rank with Adjusted Anchoring

i

Count the set bits inside the block until position  via popcount.i

• Predict the count of the set bits until 
the beginning of the block by using 
the corresponding regression line


• Adjust predicted value by using the 
corresponding correction value.

•  If the error is larger than the 
adjustable range, then scan 
towards left until hitting a 
correctly predictable block. 

• -time, without scan

• -time, if scan is required

O(1)
O(s)



Select with Adjusted Anchoring
• Start with a rough prediction of the super-block 

according to average set bit ratio

• Perform a linear scan to locate it explicitly

• By using the corresponding linear regression, 
predict the block position inside the super block

• The predicted block ID is adjusted by checking its 
rank value


• In case it is needed, again the neighboring blocks 
are scanned towards left or right until the correct 
block is located.

• Last but not the least, the kth set bit is 
determined with SIMD instructions.



Tuning the parameters

• The performance of the RSAA scheme highly depends on accurate predictions, where the 
parameters  are central in prediction performance. 


• Setting  has been observed to provide most reasonable results empirically.

• Larger , which denotes the recoverable error threshold, results in improved prediction success, 

but increases space usage (and vice versa for sure). For fast processing with small space 
consumption,  has been the best value. 


• , the block size in bits, is set to 256 as well to keep space consumption less than  while not 
hurting the prediction performance with .


• To keep the irregular block count less than , , the number of blocks in a super block is set to 
16.

s, d, m
m = d = 256, s = 16

m

m = 256
d 5 %

m = 256
1 % s

• The overhead space is  less than 5 percent, and correct prediction of the block 
rank values is more than 99% .



Experimental Results on Real-Data

• RRR,SD, LA are compressed, V1,V5,MCL are uncompressed schemes 


• Data sets are the real sequences used in previous study, which are 
averaged according to 0-1 ratios as 24, 34, and 43 percent.


• RSAA has the least overhead space


• LA compressed only the sequences with less than 30 percent set bits!



Experimental Results on Synthetic-Data

• On randomly generated bit sequences with different 
densities


• RSAA has the least overhead space 


• Randomly distributed, balanced 0-1 distribution 
favors RSAA.



Conclusions
• Rank and select on uncompressed bitmaps with the machine learning 

support


• Studies appeared targeting sparse bitmaps previously, where, in contrast, 
RSAA targets balanced density bitmaps


• Overhead around 3-5% of the input


• Would it be possible to have better time-space resuşts with other 
learning paradigms ?  

• More generally, can ML techniques help in basic combinatorial tasks ? 


