RLBWT Tricks

Brown, Gagie, Rossi

Introduction Table Lookup Mapping Runs Table Lookup Implementation Experiments Thanks

RLBWT Tricks

Nathaniel K. Brown¹ Travis Gagie¹ Massimiliano Rossi²

¹Faculty of Computer Science Dalhousie University Halifax, NS, Canada

²Department of Computer and Information Science and Engineering University of Florida Gainesville, FL, USA

Data Compression Conference, March 2022

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Table of Contents

Brown, Gagie, Rossi

Introduction Table Lookup Mapping Runs Table Lookup Implementation Experiments Thanks 1 Introduction

2 Table Lookup

3 Mapping Runs

4 Table Lookup

5 Implementation

7 Thanks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

RLBWT Tricks

Brown, Gagie, Rossi

Introduction

Table Lookup Mapping Runs Table Lookup Implementation Experiments Thanks

- **String Indexing**: Support sub-string queries on text
- **FM-Index**: basis for key tools in computational genomics
 - Short read aligners such as BWA and Bowtie
 - Application of Burrows-Wheeler Transform (BWT)

Computational Pan-Genomics:

- Want to index many genomes in reasonable space
- Solution: Versions of FM-Index based on run-length compressed BWT (RLBWT)

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Introduction

RLBWT Tricks

Brown, Gagie, Rossi

Introduction

Table Lookup Mapping Runs Table Lookup Implementation Experiments Thanks

Using Burrows-Wheeler Transform (BWT)

Leverage last-to-first (LF) mapping

■ Pan-Genomic Indexes on run-length BWT (RLBWT)

■ Conventionally, cannot compute LF steps in constant time

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

■ Nishimoto and Tabei's OptBWTR (ICALP '21)

New, simple and constant-time implementation

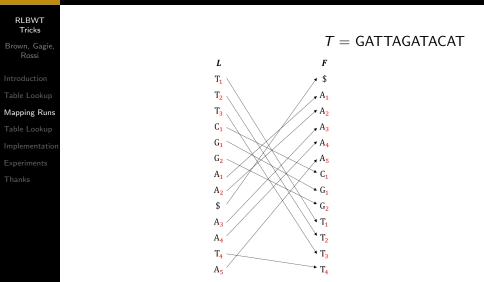
Introduction

RLBWT Tricks

Brown, Gagie, Rossi

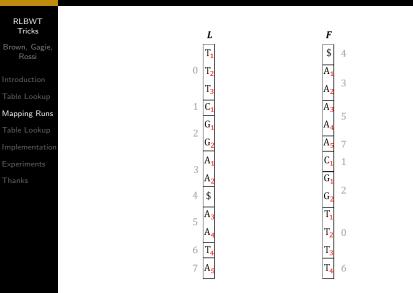
Introduction

Table Lookup Mapping Runs Table Lookup Implementation Experiments Thanks

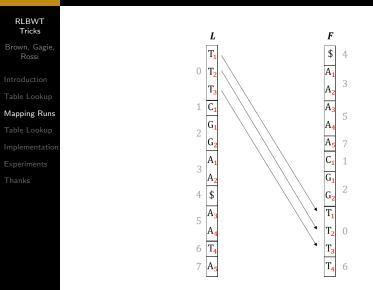

We show experimentally that their approach can be made practical for LF even without theoretical guarantees

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト ク Q (~

LF Permutation

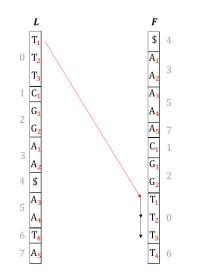

RLBWT Tricks				
Brown, Gagie,		Т	T = GATTAGATACAT	
Rossi	L	F		
Introduction	T ₁	\$		
Table Lookup	T ₂	A ₁		
Mapping Runs	T ₃	A ₂		
Table Lookup	C ₁	A ₃		
Implementation	G ₁	A ₄		
Experiments	G ₂	A ₅		
Thanks	A ₁	C ₁		
	A ₂	G <mark>1</mark>		
	\$	G ₂		
	A ₃	T ₁		
	A ₄	T ₂		
	T ₄	T ₃		
	A ₅	T ₄		

LF Permutation

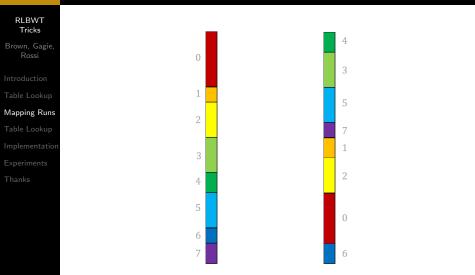


◆□ > ◆□ > ◆ 注 > ◆ 注 > ~ 注 = ∽ へ ⊙

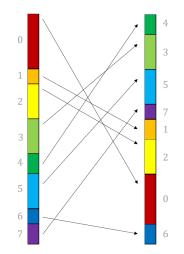
LF Runs

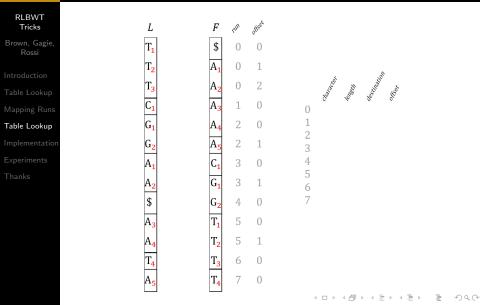


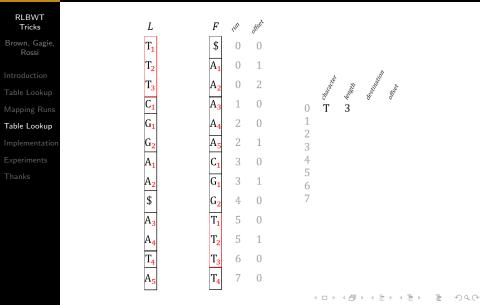
LF Runs

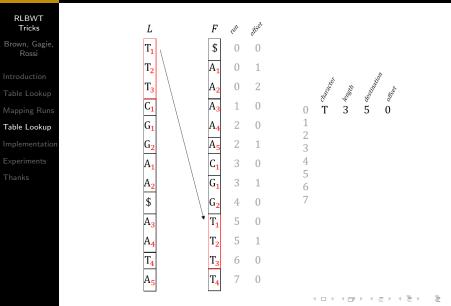


LF Runs


Any Permutation



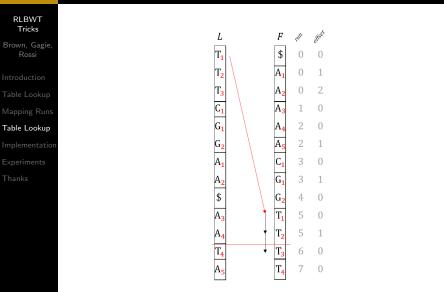

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ○ ○ ○ ○ ○ ○


Any Permutation

500

RLBWT offset F run Tricks L Brown, Gagie, T₁ \$ 0 0 Rossi T₂ A₁ 0 1 hander T T₃ 0 2 A₂ C₁ A₃ 1 С G₁ 2 A₄ Table Lookup 2 G G₂ A5 2 3 А \$ C₁ 4 A₁ 3 А G₁ 3 1 A₂ Т 7 A \$ G₂ 4 T₁ 5 A₃ T₂ 5 A₄ 1

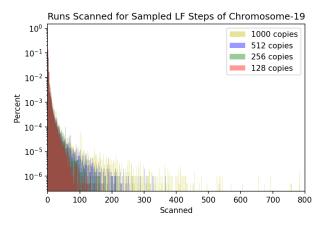
T₄


A₅

T₃ 6 0

T₄

7 0


Crossing Boundaries

Boundaries in Practice

RLBWT Tricks

- Brown, Gagie, Rossi
- Introduction Table Lookup Mapping Runs Table Lookup Implementation Experiments
- Nishimoto and Tabei limit crossings (additional space)
 98% cross less than 5 boundaries

▲ロト ▲ 課 ト ▲ 語 ト ▲ 語 ト ● 回 ● の < @

Compression

RLBWT Tricks

Brown, Gagie, Rossi

Introduction Table Lookup Mapping Runs Table Lookup

Implementation

Experiment

Thanks

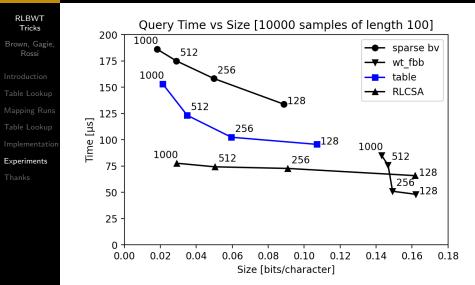
- Preliminary results vs. conventional approach:
 - LF steps \approx 6 times faster
 - $\bullet \ \ {\sf Table} \approx 14 \ {\sf times} \ {\sf larger}$
- We devise a compression scheme specific to LF
 - To perform column-wise compression, partition into blocks to mitigate locality concerns

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

 For alphabet size σ, LF mapping of run-heads forms σ non-decreasing subsequences

Setup

RLBWT Tricks


- Brown, Gagie, Rossi
- Introduction Table Lookup Mapping Runs Table Lookup
- Experiments
- Thanks

- Randomly sample 10000 patterns of length 100 and compute count queries
- Query against chromosome-19 genomes of 128, 256, 512 and 1000 copies
- Data Structures:
 - **sparse bv**: The sparse bitvector component of *r*-index
 - wt_fbb Fixed block boosting wavelet tree
 - table Our implementation of LF using Nishimoto and Tabei's approach

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

 RLCSA BWT component of run-length encoded compressed suffix array

Results

RLBWT Tricks Brown, Gagie, Rossi Introduction Table Lookup Mapping Runs Table Lookup Implementation Experiments Thanks

Thanks

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Email: nathaniel.brown@dal.ca
- Full Paper: https://arxiv.org/abs/2112.04271