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Motivation
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Figure: Inter-frame similarity for visual (leftmost top) and audio features (leftmost
bottom). Attention maps from three heads of the baseline self-attention models with
visual (top right) and audio (bottom right) features as input.

@ Similarity matrices capture high inter-frame correlation present in the video

@ Attention maps are quite sparse with vertical lines indicating that only a few
selective frames are being attended to get the output

@ This can lead to erroneous predictions
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GMSA - Formulation

|

Figure: Block diagonal (left), Toeplitz (center) and Toeplitz-Dilated (right) masks.

@ Leveraging local attention
Am

maskm|i, j]

maps
Ko
= softmax(Q\/dT’:’ © maskp) (1)
1, jen )
—o00, otherwise

mask,, enforces a frame i to attend to only the frames j in its neighborhood
N; by masking out other time-steps
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GMSA - Formulation

@ Sharing attention maps
Half of the attentions heads compute global attention maps (as defined in
original Transformer architecture) while the other half compute local
attention maps as defined in equations 1 and 2.

o Gating attention maps

RE,R' = softmax([A€, Wg,Ain Wg/']) ()
An = REQAE+R oA (4)

where WE, W] € RT*T are learnable layers shared across the heads
o Gating contextual representations

0% = concat(AfV4,..., A%, V) (5)
0" = concat(AlV4,..., Al Vi) (6)
Yée = 0fwes, Y'=0'w (7)
R& R = softmax([Ogng,O'Wé]) (8)
Y = REOYE+R oY 9)

where Weog W WE, Wé € RP*D are learnable layers
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Baseline ShareAtt GateAtt GateOp
BD TP TD BD;o TPy TD3, BDog TP3g TDZ,
GAP 85.07 85.18 85.25 85.16 85.21 85.30 85.30 86.03 86.13 85.99
MAP 44.61 44.81 45.04 44.69 44.89 45.28 45.31 47.03 47.49 46.98
PERR 78.97 79.05 79.22 79.03 79.13 79.27 79.21 79.96 80.10 79.88
Hit@1 87.75 87.79 87.92 87.78 87.85 87.96 87.91 88.40 88.49 88.33
Train Time/epoch 43 min 50 min 60 min 49 min
Disk Size 48.9 MB 48.9 MB 50.2 MB 61 MB
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Qualitative analysis

—— Local attention
Global attention
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Figure: Local and global attention profiles obtained for a video in test set. Link:
youtube.com/watch ?v=ygORXiV2Zpw

@ Global attention profile is more uneven and puts most attention towards the
end of the video showing a crowd of people. Hence, the baseline model
predicts the video incorrectly (‘Association Football’)

@ In contrast, local attention profile is more uniform temporally. Using
information from both local and global contexts, we get the correct
prediction using GateOp model with BD,y mask (‘News_Program’)
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Importance of local information
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Figure: Ratio of local to non-local gradients for visual features

@ We measure the sensitivity S; of an output frame to the local input frames in
its neighborhood N; by computing G[i, j] which denotes the norm of the
gradient of output frame Y[i] with respect to an input frame X[j]

_ an:iGNiG[ia.j] (10)
avgjcn; G[’?./] + avgign; G[I’./]

@ We observe a positive correlation between model performance and sensitivity
to local context.
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Summary and Future

e Summary
e Enforcing Transformer to learn local and global level attention separately
improves model’s generalizability
o Outputs of the better performing GMSA models were found to be more
sensitive to local input frames than the baseline mode thereby.
e Adding local context could mitigate the effects of incorrect global attention

maps
o Future Work
o Using self-supervision to reduce dependency on labeled data
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o Adding local attention maps at various hierarchies.

e Explore video segmentation techniques to define better neighborhoods for
computing local attention maps rather than a fixed-length mask based
approach.
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