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Multi-target detection (MTD)

The problem of estimating a target signal x ∈ RL from a noisy measurement
y ∈ RN that contains multiple copies of the signal, each randomly translated:

y [`] =

p∑
i=1

x [`− `i ] + ε[`], (1)

where {`i}pi=1 ∈ {L + 1, . . . ,N − L} and ε[`]
i.i.d.∼ N (0, σ2).
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(a) No noise.
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(b) SNR = 50.
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(c) SNR = 0.1.
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Cryo-electron microscopy (cryo-EM)

Single-particle cryo-electron microscopy (cryo-EM) is an emerging
technology for macromolecular structure determination.

Figure: The Nobel Prize in Chemistry 2017 was awarded to Jacques Dubochet, Joachim
Frank and Richard Henderson “for developing cryo-electron microscopy for the
high-resolution structure determination of biomolecules in solution”.
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Cryo-EM

Figure: The cryo-EM process and particle picking.
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Autocorrelation analysis

The idea: finding a signal that best explains the empirical autocorrelations
of the measurement:

A1
y :=

1

N

∑
i∈Z

y [i ], (2)

A2
y [`1] :=

1

N

∑
i∈Z

y [i ]y [i + `1], (3)

A3
y [`1, `2] :=

1

N

∑
i∈Z

y [i ]y [i + `1]y [i + `2]. (4)
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Autocorrelation analysis

For any fixed level of noise σ2, density γ and signal length L, in the limit N →∞,
we have that:

A1
y

a.s.
= γA1

x , (5)

A2
y [`1]

a.s.
= γA2

x [`1] + σ2δ[`1], (6)

A3
y [`1, `2]

a.s.
= γA3

x [`1, `2] + γA1
xσ

2(δ[`1] + δ[`2] + δ[`1 − `2]), (7)

for `1, `2 ∈ L, where δ is the Kronecker delta function.
Here, γ is the density of the target signals in the measurement and is defined by

γ = p
L

N
. (8)

The autocorrelations of x and y do not directly depend on the location of
individual signal occurrences in the measurement, but only through the
density parameter γ.
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Autocorrelation analysis

In the standard approach, we find the signal that best matches the observable
autocorrelations by minimizing a LS objective:

arg min
x∈RL,γ>0

(A1
y − γA1

x)2 + w2

L−1∑
`1=0

‖A2
y [`1]− γA2

x [`1]− σ2δ[`1]‖2
2

+w3

L−1∑
`1=0

L−1∑
`2=0

‖A3
y [`1, `2]− γA3

x [`1, `2]− γA1
xσ

2(δ[`1] + δ[`2] + δ[`1 − `2])‖2
2,

(9)

where the weights w2 and w3 were chosen such that each term is equally weighted.
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Generalized autocorrelation analysis

Generalized autocorrelation analysis consists of replacing the LS objective function
by weighted LS with optimal weights.

A specific choice of weights guarantees favorable asymptotic statistical properties,
such as minimal asymptotic variance of the estimation error [Hansen 1982].

The moment function f (θ, y) for θ ∈ Θ is chosen such that its expectation is
zero only at a single point θ = θ0, where θ0 is the ground truth parameter (in our
case, the target signal x and the density parameter γ). Namely,

E [f (θ, y)] = 0 if and only if θ = θ0. (10)
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Generalized autocorrelation analysis

For MTD, we define the i-th observation from the measurement y

yi := [y [i ], . . . , y [i + L− 1]] ∈ RL, (11)

and the moment function f (θ, yi ) simply as the discrepancy between the
autocorrelations of yi and the population autocorrelations.

The estimated sample moment function is the average of f over N observations:

gN(θ) =
1

N

N−1∑
i=0

f (θ, yi ). (12)

The generalized autocorrelation estimator is defined as the minimizer of the
weighted LS objective

θ̂N = arg min
θ∈Θ

gN(θ)TWNgN(θ). (13)
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Generalized autocorrelation analysis

Let
S := lim

N→∞
Cov

[√
NgN(θ0)

]
, (14)

be the covariance matrix of the estimated sample moment function (12) at the
ground truth θ0.

It can be shown that the optimal choice of a weighting matrix is given by

W = S−1. (15)
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Numerical experiments1

Recovery from a noisy measurement
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(a) N = 105
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(b) N = 106
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(c) N = 107
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(d) Recovery error

1The code to reproduce all experiments is publicly available at
https://github.com/krshay/MTD-GMM.
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Numerical experiments
Recovery error as a function of the measurement length
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Figure: The median estimation error as a function of the measurement length N with
SNR = 50, by: (a) autocorrelation analysis; (b) generalized autocorrelation analysis. The
black dashed lines illustrates a slope of −1/2, as predicted by the law of large numbers.
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Numerical experiments
Recovery error as a function of the SNR
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Figure: The median estimation error as a function of SNR, for measurements with
length N = 106, by: (a) autocorrelation analysis; (b) generalized autocorrelation analysis
estimator. Evidently, the generalized autocorrelation analysis estimator outperforms
classical autocorrelation analysis for all SNR levels.
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Conclusion

The main contribution of this study is incorporating the generalized method
of moments into the computational framework for the MTD problem.

We demonstrate a successful signal reconstruction directly from noisy
measurements.

The generalized autocorrelation analysis framework outperforms
autocorrelation analysis in a wide range of parameters.

A step towards efficiently estimating a molecular structure directly from a
noisy cryo-EM micrograph.
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Thanks for your attention!
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