FAST AND STABLE CONVERGENCE OF ONLINE SGD FOR CV@R-BASED RISK-AWARE STATISTICAL LEARNING

Dionysis Kalogerias Department of Electrical Engineering – Yale University

CV@R Risk-Aware Learning

 $\inf_{\boldsymbol{\theta} \in \mathbb{R}^m} \text{CV@R}_{\mathcal{P}_{\mathcal{D}}}^{\alpha} [\ell(f(\boldsymbol{x}, \boldsymbol{\theta}), y)]$

• Definition for $\alpha \in (0,1]$:

$$CV@R^{\alpha}(Z) \triangleq \inf_{t \in \mathbb{R}} \left\{ t + \frac{1}{\alpha} \mathbb{E}\{(Z - t)_{+}\} \right\}$$

- Assess tail loss events, not only mean losses
- Intuitive tradeoff between

minimax robustness risk neutrality and

Problem Formulation

• Reformulation as a risk-neutral program

$$\inf_{(\boldsymbol{\theta},t)\in\mathbb{R}^m\times\mathbb{R}}\left[G_{\alpha}(\boldsymbol{\theta},t)\triangleq\mathbb{E}_{\mathcal{P}_{\mathcal{D}}}\left\{t+\frac{1}{\alpha}(\ell(f(\boldsymbol{x},\boldsymbol{\theta}),y)-t)_{+}\right\}\right]$$

- Structural benefits of the original CV@R problem are gone!
- E.g., strong convexity of the loss does not imply strong convexity of the reformulated problem.
- Standard $O(1/\sqrt{T})$ rates seem to be all we can get (prior work)
- Still, it is expected standard SGD schemes should work well.
- Is this the case? Under which conditions?

Technical Framework

Assumption 1. Unless the function $\ell(f(\boldsymbol{x},\cdot),y)$ is convex on \mathbb{R}^m for $\mathcal{P}_{\mathcal{D}}$ -almost all (\boldsymbol{x},y) , then for each $\boldsymbol{\theta} \in \mathbb{R}^m$:

- 1. $\ell(f(\boldsymbol{x},\cdot),y)$ is $C_{\boldsymbol{\theta}}(\boldsymbol{x},y)$ -Lipschitz on a neighborhood of $\boldsymbol{\theta}$ for $\mathcal{P}_{\mathcal{D}}$ -almost all (\boldsymbol{x},y) , and $\mathbb{E}_{\mathcal{P}_{\mathcal{D}}}\{C_{\boldsymbol{\theta}}(\boldsymbol{x},y)\}<\infty$.
- 2. $\ell(f(\boldsymbol{x},\cdot),y)$ is differentiable at $\boldsymbol{\theta}$ for $\mathcal{P}_{\mathcal{D}}$ -almost all (\boldsymbol{x},y) , and $\mathcal{P}_{\mathcal{D}}(\ell(f(\boldsymbol{x},\boldsymbol{\theta}),y)=t)\equiv 0$ for all $(\boldsymbol{\theta},t)\in\mathbb{R}^m\times\mathbb{R}$.

Definition 2. (Set-Restricted PŁ) Consider a measurable function $\varphi : \mathbb{R}^L \times \mathbb{R}^M \to \mathbb{R}$, a Borel-valued multifunction $\mathcal{B}: \mathbb{R}^L \rightrightarrows \mathbb{R}^M$, and a probability measure \mathcal{M} on $\mathscr{B}(\mathbb{R}^M)$. We say that φ satisfies the (diagonal) \mathcal{B} -restricted Polyak-Proposition 1. (Strong Convexity \Longrightarrow Set-Restricted PL) Suppose that the loss $\ell(f(\boldsymbol{x},\cdot),y)$ is L-smooth and Lojasiewicz (PŁ) inequality with parameter $\mu > 0$, relative to \mathcal{M} and on a subset $\Sigma \subseteq \mathbb{R}^L$, if and only if $\varphi(\cdot, \boldsymbol{w})$ is subdifferentiable on Σ for \mathcal{M} -almost every $\boldsymbol{w} \in \mathbb{R}^M$, and it is true that, for every $\boldsymbol{z} \in \Sigma$,

 $\frac{1}{2} \|\mathbb{E}_{\mathcal{M}} \{\nabla_{\boldsymbol{z}} \varphi(\boldsymbol{z}, \boldsymbol{w}) | \mathcal{B}(\boldsymbol{z})\}\|_{2}^{2} \geq \mu \mathbb{E}_{\mathcal{M}} \{\varphi(\boldsymbol{z}, \boldsymbol{w}) - \varphi^{\star}(\boldsymbol{z}) | \mathcal{B}(\boldsymbol{z})\},$

where $\varphi^{\star}(\cdot) \triangleq \inf_{\widetilde{\boldsymbol{z}} \in \Sigma} \mathbb{E}_{\mathcal{M}} \{ \varphi(\widetilde{\boldsymbol{z}}, \boldsymbol{w}) | \mathcal{B}(\cdot) \}.$

 μ -strongly convex for $\mathcal{P}_{\mathcal{D}}$ -almost all (\boldsymbol{x}, y) . Then, for every pair $(\boldsymbol{\theta}, \mathcal{B}) \in \mathbb{R}^m \times \mathscr{B}(\mathcal{D})$ such that $\mathcal{P}_{\mathcal{D}}(\mathcal{B}) > 0$, it is true $\frac{1}{2} \|\mathbb{E}\{\nabla_{\boldsymbol{\theta}} \ell(f(\boldsymbol{x}, \boldsymbol{\theta}), y) | \mathcal{B}\}\|_{2}^{2} \ge \mu \mathbb{E}\{\ell(f(\boldsymbol{x}, \boldsymbol{\theta}), y) - \ell^{\star}(\mathcal{B}) | \mathcal{B}\},$

Main Result

where $\ell^{\star}(\mathcal{B}) \equiv \inf_{\widetilde{\boldsymbol{\theta}}} \mathbb{E}\{\ell(f(\boldsymbol{x}, \widetilde{\boldsymbol{\theta}}), y) | \mathcal{B}\}.$

Theorem 1. (Linear Convergence of CV@R-SGD) Fix $\alpha \in (0,1)$, let Assumption 1 be in effect and suppose that, for a set $\Delta \equiv \Delta_m \times [-\infty, \bar{t}]$, with $\Delta_m \subseteq \mathbb{R}^m$, it holds that $(\boldsymbol{\theta}^*, t^*) \in \arg\min_{\Delta} G_{\alpha}(\boldsymbol{\theta}, t) \neq \emptyset$, and that the loss $\ell(f(\boldsymbol{x},\cdot),y)$ obeys the \mathcal{A} -restricted PŁ inequality with parameter $\mu>0$ relative to $\mathcal{P}_{\mathcal{D}}$ on Δ . Further, for fixed $T\in\mathbb{N}$, let γ be small enough such that

$$\mathbb{E}_n\{t^{n+1}|\mathcal{D}_n\} \ge t^n + 2\gamma\mu(t^* - t^n)_+, \quad \forall n \in \mathbb{N}_T.$$

As long as $\Delta_T \triangleq \{\boldsymbol{\theta}^n, t^n\}_{n \in \mathbb{N}_T} \subseteq \Delta$, G_{α} is $L \equiv L_{\alpha}$ -smooth on Δ_T , and $2\mu \min\{\beta, \gamma\} < 1$, it is true that

$$\mathbb{E}\left\{G_{\alpha}(\boldsymbol{\theta}^{T+1}, t^{T+1}) - G_{\alpha}(\boldsymbol{\theta}^{*}, t^{*})\right\}
\leq (1 - 2\mu \min\{\beta, \gamma\})^{T} (G_{\alpha}(\boldsymbol{\theta}^{0}, t^{0}) - G_{\alpha}(\boldsymbol{\theta}^{*}, t^{*})) + \frac{(\max\{\beta, \gamma\})^{2}}{\min\{\beta, \gamma\}} \frac{L(1 + C_{T}^{2})}{4\alpha^{2}\mu},$$

where $\sup_{n \in \mathbb{N}_T} \mathbb{E}\{\|\nabla_{\theta} \ell(f(\boldsymbol{x}^{n+1}, \boldsymbol{\theta}^n), y^{n+1})\|_2^2\} \le C_T^2$.

CV@R-SGD Algorithm

$$\mathcal{A}(\boldsymbol{\theta}, t) \triangleq \{(\boldsymbol{x}, y) \in \mathcal{D} | \ell(f(\boldsymbol{x}, \boldsymbol{\theta}), y) - t > 0\}$$

$$\nabla G_{\alpha}(\boldsymbol{\theta}, t) = \begin{bmatrix} \frac{1}{\alpha} \mathbb{E}_{\mathcal{P}_{\mathcal{D}}} \{ \mathbf{1}_{\mathcal{A}(\boldsymbol{\theta}, t)}(\boldsymbol{x}, y) \nabla_{\boldsymbol{\theta}} \ell(f(\boldsymbol{x}, \boldsymbol{\theta}), y) \} \\ -\frac{1}{\alpha} \mathbb{E}_{\mathcal{P}_{\mathcal{D}}} \{ \mathbf{1}_{\mathcal{A}(\boldsymbol{\theta}, t)}(\boldsymbol{x}, y) \} + 1 \end{bmatrix}$$

$$\left[t^{n+1} = t^n - \gamma \left[1 - \frac{1}{\alpha} \mathbf{1}_{\mathcal{A}(\boldsymbol{\theta}^n, t^n)}(\boldsymbol{x}^{n+1}, y^{n+1})\right]\right]$$

$$\boldsymbol{\theta}^{n+1} = \boldsymbol{\theta}^n - \beta \frac{1}{\alpha} \mathbf{1}_{\mathcal{A}(\boldsymbol{\theta}^n, t^n)}(\boldsymbol{x}^{n+1}, y^{n+1}) \nabla_{\boldsymbol{\theta}} \ell(f(\boldsymbol{x}^{n+1}, \boldsymbol{\theta}^n), y^{n+1})$$

Numerical Example

We consider the quadratic loss

$$\ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}), y) = (y - \boldsymbol{\theta}^T \boldsymbol{x})^2 + \lambda \|\boldsymbol{\theta}\|^2$$

where $y = \boldsymbol{\theta}_{0}^{T} \boldsymbol{x}$.

Risk-aware ridge regression problem

$$\inf_{\boldsymbol{\theta} \in \mathbb{R}^m} \text{CV@R}_{\mathcal{P}_{\mathcal{D}}}^{\alpha} \left[(y - \boldsymbol{\theta}^T \boldsymbol{x})^2 + \lambda \|\boldsymbol{\theta}\|_2^2 \right]$$

$$\boldsymbol{\theta}_o \in \mathbb{R}^7$$
, $\boldsymbol{x} \in \mathbb{R}^7$ indep. unif. in $[0,2]$, $\lambda \equiv 0.1$

