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CV@R Risk-Aware Learning

inf CVGRG, [((f(x,6),y)

 Definition for a € (0, 1]:
1
CVQR®(Z) £ inf {t +SR{(Z - t)+}}
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* Assess tail loss events, not only mean losses

* Intuitive tradeotf between
risk neutrality and

a— 0

Problem Formulation

* Reformulation as a risk-neutral program

inf [ Ga(0.1) 2 Epy {t 4 —(0(f(x.0).4) ~ 1), }

(0,t)eR™ xR

* Structural benefits of the original CV@R problem are gone!

 E.g., strong convexity of the loss does not imply strong
convexity of the reformulated problem.

 Standard O(1/VT) rates seem to be all we can get (prior work)

e Still, it is expected standard SGD schemes should work well.

WETFLOOR

 Is this the case? Under which conditions?

VG, (0,1)=

CV@R-SGD Algorithm
A(0,t) = {(x,y) € DIU(f(=,0),y) —t > 0}
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Technical Framework

Assumption 1. Unless the function £(f(x,-),y) is convex on R™ for Pp-almost all (x,y), then for each 8 € R™:

1. U(f(x,-),y) s Co(x,y)-Lipschitz

on a neighborhood of @ for Pp-almost all (x,y), and Ep,{Ce(x,y)} < oo.

2. U(f(x,-),y) is differentiable at @ for Pp-almost all (x,y), and Pp(l(f(x,0),y) =t) =0 for all (0,t) € R™ x R.

Definition 2. (Set-Restricted PL) Consider a measurable function ¢ : RE xR™ — R, a Borel-valued multifunction
B:RY = RM | and a probability measure M on B(RM). We say that ¢ satisfies the (diagonal) B-restricted Polyak- |Proposition 1. (Strong Convexity —> Set-Restricted PL) Suppose that the loss ¢(f(x,-),y) is L-smooth and
Lojasiewicz (PL) inequality with parameter u > 0, relative to M and on a subset ¥ C RL | if and only if (-, w) is pu-strongly convex for Pp-almost all (x,y). Then, for every pair (6,8) € R™ x %B(D) such that Pp(B) > 0, it is true

subdifferentiable on ¥ for M-almost every w € RM | and it is true that, for every z € ¥,
1 *
S IEM{V=0(z, w)[B(2)}5 > pEm{p(z,w) — ¢*(2)|B(2)},

where *(-) = infzex Ep{p(Z, w)|B()}.

that
%HE{Vgé(f(m, 0),y)|B)}H|5 > pE{L(f(x,0),y) — £*(B)|B},

where (*(B) = inf5 E{{(f(x, ), y)|B}.

Main Result

Theorem 1. (Linear Convergence of CVQR-SGD) Fiz o € (0,1), let Assumption 1 be in effect and suppose
that, for a set A = A,, X |[—o0o,t], with A,, C R™, it holds that (0",t*) € argmin\G,(0,t) # 0, and that the loss
((f(x,-),y) obeys the A-restricted PL inequality with parameter p > 0 relative to Pp on A. Further, for fized T € N,

let v be small enough such that

LAY, >t 4 2yu(tt — )4,  ¥n € Np.

As long as Ar = {0",t"},en,. C A, Gy is L = Lo-smooth on A7, and 2pumin{B,v} < 1, it is true that

LG (07T tTH) — G (0%, 19))
< (1 —2pmin{ 8,7} (Ga(0°,1°) — Go(8",1%)) -

(max{f,v})? L(1 + C7)
min{8,v}  4a’p

Vol(f(x"™,0"),y" )|

where sup,, ey, Eq

2} < 3.

Numerical Example

« We consider the quadratic loss
((fo(x).y) = (y— 0" x)* + A0

where y = 0] x.
* Risk-aware ridge regression problem

inf CVQRS, [(y— 6" x)* + A[|6]]3]
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