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3. JUSTTLDR

Ø Multilingual ASR is concerned 
with dealing with multiple 
languages with one model

Ø Combine self-supervised losses 
with supervised loss to jointly 
train a powerful multilingual ASR 
system

Per Language

4. Experiments

• On average WER of all 8 languages, all JUST-
based methods outperform previous works. 
In particular, JUST outperforms the 
monolingual baseline with 5-gram LM by 
33.3%, XLSR-53 by 32.0%, B0 by 18.2%, E3 
by 8.8%

Ø Training, deploying and maintaining 
one model per language, especially 
on long tail of low-resource 
languages, can quickly become 
cumbersome as the number of 
languages increases

Ø A single model for all languages can 
simplify the production pipeline 
significantly

Ø Training multilingual ASR models on 
a small set of similar languages can 
improve recognition performance

Ø Support the use case of code-
switching

2. Dataset

1. Motivations

• Conv downsample
• 2 Convolutional layers
• Extract latent representations from the 
surface features (log-mel filter bank)

Feature encoder

Ø Multilingual LibriSpeech (MLS)
Ø English(en), German(de), Dutch(nl), 

Spanish(es), French(fr), 
Portuguese(pt), Italian(it), Polish(pl)

Ø Extremely imbalanced:
• English has up to 44.6k hrs
• Portuguese and Polish only have 
as low as ~100 hrs

Ø All the audio data are 
downsampled from 48kHz to 16kHz
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• Encoded features are passed to a 
quantizer without masking
• Quantizer “summarizes" all the latent 
speech representations to a finite set 
(codebook) of representative 
discriminative speech tokens
• Output both the quantized token + 
token ID

Quantization

• A stack of Conformer blocks
• Read the encoded features with 
masking
• Extract context vectors from feature 
encoder output for computing the w2v2 
contrastive loss

Contrastive Module

• Adapted from w2v-bert
• Continue to extract context vectors 
(from the contrastive module’s output) 
for computing the MLM loss
• Cross-entropy with ground-truth token 
IDs

MLM Module

• 2-layer LSTM
• RNN-T loss

Decoder Module

• Self-supervision: contrastive loss, MLM
• Supervision: RNN-T

Overview

Local vs Global Attention

JUST vs JUST+finetune


