

Not All Features Are Equal: Selection of Robust Features for Speech Emotion Recognition in Noisy Environments

Seong-Gyun Leem, Daniel Fulford, Jukka-Pekka Onnela, David Gard, and Carlos Busso

Speech Emotion Recognition (SER) in Real-World Applications

UT Dallas

Speech Emotion Recognition (SER) in Real-World Applications

UT Dallas Multimodal Signal Processing Laboratory

Performance degradation caused by the background noise

- Speech can be acquired from unconstrained noisy environment
- Background noises distort the features used for SER system
 => disrupts the prediction performance in real-world applications

Our work

Examine the robustness of individual features

- There exist features resilient to a background noise
- Build a robust feature selection method for noisy SER
 - Improves the performance without using a model adaptation

The MSP-Podcast Corpus (v1.8)

Spontaneous emotional speech dataset

- Podcast recordings are collected (> 113 hours)
- Annotated on Amazon Mechanical Turk
 - We focus on emotional attributes (arousal, valence, dominance)

Noisy Version of the MSP-Podcast Corpus

- Simulate noisy speech recorded from realworld applications
 - Use non-copyright radio shows as a noise
 - Directly record the MSP-Podcast and radio noise on smartphone
 - 10dB, 5dB, 0dB conditions are collected

Emotional labels

- Emotional labels are transferred from the
 - clean MSP-PODCAST corpus

Recording condition	(A) (inch)	(B) (inch)	Estimated SNR (dB)
10dB	5	35	11.06
5dB	10	30	4.34
OdB	15	25	0.15

ID THE UNIVERSITY OF TEXAS AT DALLAS

Noise

Resources

Data preparation

- MSP-Podcast v1.8 (clean speech set)
 - Recordings are annotated for emotional attribute labels (arousal, valence, dominance)
- Noisy version of MSP-Podcast (noisy speech set)

Condition	Training	Development	Test
Clean	44,879	7,800	15,326
Noisy (10dB, 5dB, 0dB)	-	7,800	15,326

- All models are trained with the clean set
- Development sets are used for single feature analysis and feature selection

Acoustic features

- 2013 ComParE feature set is used
- 65 dimensions of low-level descriptors (LLDs)

msp.utdallas.edu

ID THE UNIVERSITY OF TEXAS AT DALLA

8

Emotion recognition model

Architecture

- Each model predicts an emotional attribute score
 - Arousal, dominance, valence
- Multitask learning is used [Parthasarathy & Busso, 2020]
 - $\mathcal{L}_{total} = \alpha \times \mathcal{L}_{aro} + \beta \times \mathcal{L}_{val} + (1 \alpha \beta) \times \mathcal{L}_{dom}$
 - Concordance correlation coefficient (CCC) is used
- 10% dropout is applied to the input

Srinivas Parthasarathy and Carlos Busso, "Semi-supervised speech emotion recognition with ladder networks," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2697-2709, September 2020.

αβArousal0.70.3Valence0.10.8Dominance0.00.2

Coefficients for multitask learning

UT Dallas NUT Dallas Nuttimodal Signal Processing Laborat

Feature probe models

Architecture

- All the models have the same architecture as the model trained with all the LLDs
- They also follow the same training strategy as the emotion recognition model
- A single feature is used as an input

msp.utdallas.edu

Clean Condition

Using all features shows the best performance

Noisy condition (10dB)

• A model trained with a single LLD **perform better than using all the LLDs**

Relative performance decrease

Some single LLDs show the less performance decrease than using all LLDs

Robust Feature Selection For Noisy SER

msp.u<u>tdallas.edu</u>

CRS

Feature Selection Metrics

Performance

- Absolute performance in the noisy condition
- $\mathcal{R}_{performance} = CCC_{noisy}$
- Robustness
 - **Relative performance decrease** from the clean to the noisy condition

$$\mathcal{R}_{robustness} = \frac{\{CCC_{noisy} - CCC_{clean}\}}{CCC_{clean}}$$

Joint

- Summation of the performance and the robustness ranks
- $\mathcal{R}_{joint} = 0.5 \times \mathcal{R}_{performance} + 0.5 \times \mathcal{R}_{robustness}$

Cumulative Performance by Adding LLDs

Coverage

16

Coverage Selection

Selected Coverage

Select the best feature set based on the development set analysis

Comparison between clean and noisy condition

Use Test set for the evaluation

	Clean		10dB			
	Arousal	Dominance	Valence	Arousal	Dominance	Valence
Performance	0.401	0.399	0.165	0.265	0.298	0.109
Robustness	0.379	0.429	0.151	0.316	0.357	0.139
Joint	0.414	0.413	0.192	0.346	0.319	0.115
Random	0.376	0.405	0.181	0.157	0.239	0.074
All features	0.572	0.505	0.212	0.278	0.288	0.097

Clean condition:Noisy condition:Using all the features is the bestSelecting the features is better!

- Improvements: 24.4% (Arousal) / 23.9% (Dominance) / 43.2% (Valence)
- Randomly selecting the features does not improve the performance
 - Using a smaller number of features does not necessarily improve performance the university of texas at dallas

Mismatched noisy condition

Train SER model with the clean speech

Do not need to match the condition for feature selection

Use 10dB condition to select the resilient features

	5dB		OdB			
	Arousal	Dominance	Valence	Arousal	Dominance	Valence
Performance	0.288	0.305	0.096	0.236	0.258	0.083
Robustness	0.252	0.340	0.115	0.201	0.290	0.084
Joint	0.340	0.302	0.109	0.292	0.257	0.076
Random	0.141	0.221	0.063	0.116	0.183	0.048
All features	0.228	0.262	0.076	0.194	0.214	0.058

- Improvements
 - 5dB: 49.1% (Arousal) / 29.7% (Dominance) / 51.3% (Valence)
 - 0dB: 50.5% (Arousal) / 35.5% (Dominance) / 44.8% (Valence)

Conclusions

Not all features are equal

Some features are resilient to background noises for SER task

Feature probe models

Robust feature set selection

- Rank-based feature selection is better than using all features in noisy condition
- Random selection does not help
- Approach also worked in mismatched SNR conditions

This study was supported by NIH under grant 1R01MH122367-01.

- Questions or Contact: Seong-Gyun Leem
 - SeongGyun.Leem@UTDallas.edu

