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Motivation The MaP-Podeast Lorpus Ningle Feature Assessment

Background: = Emotional corpus collected at UT-Dallas (v 1.8) We train 65 SER models. e s o
each trained with a single LLD
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= Background noises distort the features used for speech = Multiple sentences from speakers appearing in various podcasts
(2.75s — 11s) Trained with clean speech, test with
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emotion recognition (SER) systems _
= Annotated on Amazon Mechanical Turk noisy speech

= Disrupts the emotion prediction performance

2. Evaluate the performance
by using a single LLD

= Emotional attributes (valence, arousal, dominance) =  Environmental mismatch

In real-world applications . .
=  Primary and secondary emotions, but not used here = We evaluate the concordance

correlation coefficient (CCC)
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Do all features extracted from noisy speech equally degrade = Noisy version of the corpus by directly recording the emotional
the prediction performance? speech with non-stational radio noise Performance of each LLD in 10dB condition

= Simulate noisy speech recorded from real-world applications # {Specmarm il
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Can we select a feature set that 1Is most resilient to

= \We collect 10dB, 5dB, and 0dB conditions foand e
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Examine the robustness of individual features e =il Tme=— e | | || Y
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Build a robust feature selection method by ranking low-level
descriptors (LLDs) to improve the noise robustness , il Some features perform better than using all features in noisy condition!

Feature Set Selection for Noisy Speech Emotion Recognition Lonclusions

Feature Set Selection Selection Metrics Cumulative Performance by Adding LLDs Ranking features based on:

1- Performance = Performance
-~ Feature probe models ™ — performance robustness ~—— joint random
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I. Rank features based on a criterion K—h—sft R —— CCChoisy — CCCeiean 20 ¢/ 0 T " Rank-based feature selection is better than using
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Selected 3- Joint Arousal Dominance Valence Random selection does not help

features 3. Train the model
with the selected features *
| 60-00 0.5*Performance +

0.5*Robustness .
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B I Future Work

ACOUS“C Featu res EmOtlon ReCOg nition Fram eWOrk Arousal Dominance Valence Arousal Dominance Valence Arousal Dominance Valence We will investigate robustness of the feature set

Approach also worked in mismatched SNR
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Selected Coverage Arousal: 10% / Dominance: 20% / Valence: 40%

= Predict the emotional attribute scores Performance  0.265 0.298 0.109 0.288 0.305 0.096 0.236 0.258 0.083 depending on type of noise
0.139 0.252 0.340 0.115 0.201 0.290 0.084

= Interspeech 2013 Computational

Paralinguistic Challenge feature set = Use multitask learning approach during training Robustness 0.316 0.357
[Parthasarathy, 2017] Joint 0.346 0.319 0.115 0.340 0.302 0.109 0.292 0.257 0.076

_Random 0.157 0.239 0.074 B 0.141 0.221 0.063 0.116 0.183 0.048

Enhance weak features instead of enhancing all

= 65 LLDs in the set features

Convl maxpool Conv2 maxpool Conv3 maxpool Conv4 maxpool flatten fe1 f2  output

s pe =4 o= ps=B k=B ps = =B ps=B All features 0.278 0.288 0.097 0.228 0.262 0.076 0.194 0.214 0.058
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