

Motivation

- Graphs model a number of real-world systems
 - Graph nodes: neurons in brain, users in social networks
 - Graph edges: neuron connections, friendship between users
 - Nodal features: types of neurons, education level of users
- Goal: Node classification
 - Disease detection, social network analysis

- Method: Online learning & Selective sampling over graphs
 - No need to store historical data
 - Not requires the availability of all labels
- Challenge 1: Efficient use of nodal features
 - Not considered in previous studies
 - Nodal features contain useful information for better utility
- Challenge 2: Increased bias resulted from the utilization of connectivity
 - Biased results affect critical real-life decisions
 - Bias not taken into consideration in previous works

Problem Statement

- Goal: Node classification over graphs for a given graph adjacency $\mathbf{A} \in$ $\{0,1\}^{N\times N}$, nodal features $\mathbf{X} \in \mathbb{R}^{N\times F}$ and partially available labels \mathbf{y}
- Utilization of structural information: $\frac{1}{2}\sum_{i,j=1}^{n} (f_i f_j)^2 \mathbf{A}_{ij} = \mathbf{f}^\top \mathbf{L} \mathbf{f}$

- Problem formulation: $\min_{\mathbf{w}} \frac{1}{2} \left\| \mathbf{M}^{\top} \mathbf{w} \mathbf{y} \right\|^2 + \frac{\mu}{2} \|\mathbf{w}\|^2$, where $\mathbf{L}^{\dagger} = \mathbf{M}^{\top} \mathbf{M}$
- Recursive solution in online setting: $\mathbf{w}_{t+1} = \mathbf{A}_t^{-1} \mathbf{b}_t$ where $\mathbf{A}_t = \mu \mathbf{I} + \sum_{i=1}^t \mathbf{m}_i \mathbf{m}_i^{\top}$, and $\mathbf{b}_t = \sum_{i=1}^t y_i \mathbf{m}_i$

FAIRNESS-AWARE SELECTIVE SAMPLING ON ATTRIBUTED GRAPHS

Oyku Deniz Kose and Yanning Shen

University of California, Irvine – Department of Electrical Engineering and Computer Science

Proposed Scheme

. Fusion of Nodal Features

- Nodal feature can benefit node classification
- Gender of patients for disease detection
- Age of users for community detection
- Non-optimality of direct concatenation of nodal features and topology information
- Proposed method:
- (a) Generate the similarity matrix \mathbf{K} for nodal features based on cosine similarity: $K_{i,j} = \frac{\operatorname{Sim}_{\cos}(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{j}) + 1}{2}$
- (b) Transform K into a laplacian-like matrix L_x :

$$\mathbf{L}_x = \mathbf{I} - \mathbf{K}_D^{-\frac{1}{2}} \mathbf{K} \mathbf{K}_D^{-\frac{1}{2}}$$

- (c) Combine the information coming from graph topology and nodal features: $(\mathbf{L} + \beta \mathbf{L}_x)^{\dagger} = \hat{\mathbf{M}}^{\dagger} \hat{\mathbf{M}}$
- Updated Problem Formulation: $\min_{\hat{\mathbf{w}}} \frac{1}{2} \left\| \hat{\mathbf{M}}^{\top} \hat{\mathbf{w}} \mathbf{y} \right\|^2 + \frac{\mu}{2} \| \hat{\mathbf{w}} \|^2$
- Recursive solution:

$$\mathbf{\hat{w}}_{t+1} = \mathbf{\hat{A}}_t^{-1}\mathbf{\hat{b}}_t$$

with $\hat{\mathbf{A}}_t = \mu \mathbf{I} + \sum_{i=1}^t \hat{\mathbf{m}}_i \hat{\mathbf{m}}_i^{\top}$, and $\hat{\mathbf{b}}_t = \sum_{i=1}^t y_i \hat{\mathbf{m}}_i$

2. Fairness Enhancement

- Machine learning algorithms propagate bias
- Impact of race in credit decision
- Impact of gender in ad recommendation

- Use of network connectivity amplifies existing bias
- Dimensionality reduction is utilized to reduce computational complexity
- $(\mathbf{L} + \beta \mathbf{L}_x)^{\dagger} = \hat{\mathbf{M}}^{\top} \hat{\mathbf{M}}$ creates N dimensional data vectors
- Training of linear regressor \hat{w} : $\mathcal{O}(N^2)$
- Create $\hat{\mathbf{M}}^d \in \mathbb{R}^{d \times N}$ such that $\hat{\mathbf{M}}^d = \operatorname{diag}\left(\frac{1}{\sqrt{\sigma_1}}, \ldots, \frac{1}{\sqrt{\sigma_d}}\right) [\mathbf{v}_1, \ldots, \mathbf{v}_d]^\top$ where $(\mathbf{L} + \beta \mathbf{L}_x) = \sum_{i=1}^N \sigma_i \mathbf{v}_i \mathbf{v}_i^\top$
- Proposed method:
- (a) Measure correlation between the sensitive attribute and the $d + d_s$ smallest eigenvectors of $(\mathbf{L} + \beta \mathbf{L}_x)$
- (b) Create $\hat{\mathbf{V}} \in \mathbb{R}^{d \times N}$ consisting of the eigenvectors corresponding to d smallest correlation values as rows
- (c) $\hat{\mathbf{M}}_{fair}^{d} = \hat{\mathbf{\Sigma}}^{-\frac{1}{2}} \hat{\mathbf{V}}$
- Intuition: Use bases less correlated with sensitive attributes

UCI Samueli School of Engineering

Results

Fusion of Nodal Features

- Datasets: Real-world social networks where region information is sensitive attribute and working field is label
- Utility metric: Error rate (ER)
- Fairness metrics:
 - $-\Delta_{SP} = |P(\hat{y} = 1 \mid s = 0) P(\hat{y} = 1 \mid s = 1)|$ $-\Delta_{EO} = |P(\hat{y} = 1 \mid y = 1, s = 0) - P(\hat{y} = 1 \mid y = 1, s = 1)|$
- Baselines:
 - Online learning with local and global consistency (OLLGC)[1]
 - Selective sampling with local and global consistency (SSLGC) [1]
 - Aggressive graph-based selective sampling (AGS) [2]

	Pokec-z				Pokec-n			
	ER (%)	Δ_{SP} (%)	Δ_{EO} (%)	Q_{num}	ER (%)	Δ_{SP} (%)	Δ_{EO} (%)	Q_{num}
OLLGC	41.69	4.33	6.84	-	42.11	6.49	6.57	-
SSLGC	39.91	10.00	4.65	2622	40.61	10.69	8.86	2173
AGS	38.67	11.67	14.53	3865	39.37	11.30	9.56	3077
OLLGC, Direct Fusion	39.77	5.59	6.98	-	41.63	4.99	4.39	-
SSLGC, Direct Fusion	38.65	3.74	4.87	5054	41.44	5.22	2.94	4189
AGS, Direct Fusion	35.64	8.72	9.67	2680	38.87	6.95	5.46	2309
OLLGC, Kernel Fusion	39.23	7.54	10.81	-	40.99	7.03	8.76	-
SSLGC, Kernel Fusion	37.12	5.75	8.20	2563	39.25	2.34	4.35	1849
AGS, Kernel Fusion	35.58	14.49	16.86	3617	37.05	10.70	12.67	2912

- Utilization of nodal features provides better utility with less queried labels
- Direct concatenation not an optimal fusion strategy
- Typically increased bias together with nodal features

Fairness Enhancement

	Pokec-z				Pokec-n				
	ER (%)	Δ_{SP} (%)	Δ_{EO} (%)	Q_{num}	ER (%)	Δ_{SP} (%)	Δ_{EO} (%)	Q_{num}	
Fair-OLLGC Fair-SSLGC Fair-AGS	$\begin{array}{c} 42.60 \\ 40.93 \\ 39.48 \end{array}$	$7.26 \\ 7.64 \\ 10.04$	$1.58 \\ 0.58 \\ 3.65$	- 2636 3827	$\begin{array}{c} 43.30 \\ 42.11 \\ 40.25 \end{array}$	$5.33 \\ 9.46 \\ 5.91$	$5.37 \\ 4.12 \\ 3.74$	2437 3222	
Fair-OLLGC, Kernel Fusion Fair-SSLGC, Kernel Fusion Fair-AGS, Kernel Fusion	$40.23 \\ 37.64 \\ 36.34$	$2.42 \\ 1.84 \\ 5.48$	$4.12 \\ 5.40 \\ 2.14$	$2064 \\ 3500$	$40.94 \\ 39.47 \\ 37.67$	$1.95 \\ 1.19 \\ 7.77$	$2.97 \\ 2.42 \\ 6.52$	- 2631 3009	

- Fairness improvement in terms of statistical parity and equal opportunity
- Increased effectiveness together with nodal features

Conclusions

- An improvement over existing selective sampling algorithms by enabling the use of nodal features
- Amplified bias together with the employment of nodal features
- A fairness enhancement method through fairness-aware dimensionality reduction
- Demonstration of the efficacy of the proposed bias-reduction method on real social networks
- Future work: Proposed bias reduction method in a more general setting

[1] Gu, Quanquan, et al. "Selective sampling on graphs for classification." Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. 2013.

[2] P. Yang, P. Zhao, V. W. Zheng, and X.-L. Li, "An aggressive graph-based selective sampling algorithm for classification," in IEEE Int Conf. on Data Mining, Nov. 2015, pp. 509-518.

Department of Electrical Engineering and Computer Science